Home
Class 12
MATHS
lim(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^...

`lim_(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0` equals

A

`1`

B

`sqrt(ab)`

C

`ab`

D

`(2b)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \frac{n \sqrt{a} + n \sqrt{b}}{2} \right)^n \) where \( a, b > 0 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{n \to \infty} \left( \frac{n \sqrt{a} + n \sqrt{b}}{2} \right)^n \] We can factor out \( n \) from the numerator: \[ L = \lim_{n \to \infty} \left( n \left( \frac{\sqrt{a} + \sqrt{b}}{2} \right) \right)^n \] ### Step 2: Simplify the expression This can be rewritten as: \[ L = \lim_{n \to \infty} n^n \left( \frac{\sqrt{a} + \sqrt{b}}{2} \right)^n \] ### Step 3: Analyze the limit As \( n \to \infty \), the term \( n^n \) grows very rapidly. The term \( \left( \frac{\sqrt{a} + \sqrt{b}}{2} \right)^n \) will also grow, but we need to determine the behavior of the entire expression. ### Step 4: Use logarithmic properties To analyze the limit more effectively, we can take the natural logarithm: \[ \ln L = \lim_{n \to \infty} \left( n \ln n + n \ln \left( \frac{\sqrt{a} + \sqrt{b}}{2} \right) \right) \] This can be split into two parts: \[ \ln L = \lim_{n \to \infty} n \ln n + n \ln \left( \frac{\sqrt{a} + \sqrt{b}}{2} \right) \] ### Step 5: Evaluate the limit As \( n \to \infty \), the term \( n \ln n \) dominates the expression. Therefore, we can conclude: \[ \ln L \to \infty \quad \text{(since \( n \ln n \) grows faster than any constant)} \] Thus, \( L \to \infty \). ### Conclusion The limit diverges to infinity: \[ \lim_{n \to \infty} \left( \frac{n \sqrt{a} + n \sqrt{b}}{2} \right)^n = \infty \]

To solve the limit \( \lim_{n \to \infty} \left( \frac{n \sqrt{a} + n \sqrt{b}}{2} \right)^n \) where \( a, b > 0 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{n \to \infty} \left( \frac{n \sqrt{a} + n \sqrt{b}}{2} \right)^n \] We can factor out \( n \) from the numerator: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)3^(1/n) equals

The value of lim_(ntooo)((a-1+root(n)(b))/a)^(n) (agt0,bgt0) is equal to

If A,B,C are positive real numbers such that lim_(xrarr oo) (sqrt(Ax^2+Bx)-Cx)=2, then (BC)/(A) equals

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

lim_(n rarr oo)(2^(n+1)+3^(n+1))/(2^n+3^n) equals (A)2 (B)3 (C)5 (D)0

lim_(nrarr oo)(1+sin.(1)/(n))^n equals

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. ("lim")(n vec oo)"{"(n/(n+1))^(alpha)+sin (1/n)]^n(when alpha in Q) i...

    Text Solution

    |

  2. The value of lim(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+....

    Text Solution

    |

  3. lim(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

    Text Solution

    |

  4. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  5. lim(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

    Text Solution

    |

  6. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |

  7. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  8. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |

  9. The value of lim(xrarr0) (loge(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

    Text Solution

    |

  10. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  11. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  12. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  13. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  14. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  15. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  16. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  17. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  18. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  19. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  20. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |