Home
Class 12
MATHS
The value of lim(xrarr oo) (3sqrt(x^3+x^...

The value of `lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2))`, is

A

`(1)/(2)`

B

`(2)/(3)`

C

`1`

D

`(4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} (3\sqrt{x^3+x^2} - 3\sqrt{x^3-x^2}) \), we can follow these steps: ### Step 1: Factor out the common terms We can factor out \( 3 \) from the expression: \[ \lim_{x \to \infty} 3(\sqrt{x^3+x^2} - \sqrt{x^3-x^2}) \] ### Step 2: Simplify the square roots Next, we simplify the square roots inside the limit: \[ \sqrt{x^3+x^2} = \sqrt{x^3(1+\frac{1}{x})} = x^{3/2}\sqrt{1+\frac{1}{x}} \] \[ \sqrt{x^3-x^2} = \sqrt{x^3(1-\frac{1}{x})} = x^{3/2}\sqrt{1-\frac{1}{x}} \] Thus, we can rewrite the limit as: \[ \lim_{x \to \infty} 3\left(x^{3/2}\sqrt{1+\frac{1}{x}} - x^{3/2}\sqrt{1-\frac{1}{x}}\right) \] ### Step 3: Factor out \( x^{3/2} \) Now, we can factor \( x^{3/2} \) out of the expression: \[ \lim_{x \to \infty} 3x^{3/2}\left(\sqrt{1+\frac{1}{x}} - \sqrt{1-\frac{1}{x}}\right) \] ### Step 4: Analyze the limit of the square root difference As \( x \to \infty \), \( \frac{1}{x} \to 0 \). Therefore, we can use the binomial expansion for the square roots: \[ \sqrt{1+\frac{1}{x}} \approx 1 + \frac{1}{2x} \quad \text{and} \quad \sqrt{1-\frac{1}{x}} \approx 1 - \frac{1}{2x} \] Thus, \[ \sqrt{1+\frac{1}{x}} - \sqrt{1-\frac{1}{x}} \approx \left(1 + \frac{1}{2x}\right) - \left(1 - \frac{1}{2x}\right) = \frac{1}{x} \] ### Step 5: Substitute back into the limit Substituting back into the limit gives: \[ \lim_{x \to \infty} 3x^{3/2}\left(\frac{1}{x}\right) = \lim_{x \to \infty} 3x^{1/2} = 3\sqrt{x} \] ### Step 6: Evaluate the limit as \( x \to \infty \) As \( x \to \infty \), \( 3\sqrt{x} \to \infty \). ### Final Result Thus, the value of the limit is: \[ \lim_{x \to \infty} (3\sqrt{x^3+x^2} - 3\sqrt{x^3-x^2}) = \infty \]

To solve the limit \( \lim_{x \to \infty} (3\sqrt{x^3+x^2} - 3\sqrt{x^3-x^2}) \), we can follow these steps: ### Step 1: Factor out the common terms We can factor out \( 3 \) from the expression: \[ \lim_{x \to \infty} 3(\sqrt{x^3+x^2} - \sqrt{x^3-x^2}) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x) , is

lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=

lim_(xrarr3) x+3

The value of lim_(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

lim_(xrarr0) (3sqrt(1+x-1))/(x)

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(x rarr 3)(x-3)/(sqrt(x-2)-sqrt(4-x))

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(xrarr4) (3-sqrt(5+x))/(1-sqrt(5-x))

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. underset(xrarroo)(lim)(cot^(-1)(sqrt(x+1)+sqrtx))/(sec^(-1){((2x+1)/(x...

    Text Solution

    |

  2. lim(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

    Text Solution

    |

  3. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |

  4. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  5. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |

  6. The value of lim(xrarr0) (loge(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

    Text Solution

    |

  7. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  8. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  9. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  10. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  11. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  12. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  13. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  14. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  15. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  16. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  17. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  18. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  19. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  20. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |