Home
Class 12
MATHS
If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((s...

If `lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2)` exists and is equal to l, then `b+d+l` is equal to

A

5

B

6

C

7

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we will analyze the given expression and find the values of \( b \), \( d \), and \( l \). ### Step 1: Analyze the Limit We start with the limit: \[ \lim_{x \to -1} \frac{\sin(x^3 + bx^2 + cx + d)}{(\sqrt{2+x} - 1)(\log_e(x+2))^2} \] For this limit to exist, both the numerator and denominator must approach 0 as \( x \to -1 \). ### Step 2: Evaluate the Denominator First, we evaluate the denominator: - As \( x \to -1 \), \( \sqrt{2+x} \to \sqrt{1} = 1 \), so \( \sqrt{2+x} - 1 \to 0 \). - Also, \( \log_e(x+2) \to \log_e(1) = 0 \). Thus, both parts of the denominator approach 0, confirming that we have a \( \frac{0}{0} \) indeterminate form. ### Step 3: Rationalize the Denominator To simplify the limit, we can rationalize the denominator: \[ \sqrt{2+x} - 1 = \frac{(2+x) - 1}{\sqrt{2+x} + 1} = \frac{x + 1}{\sqrt{2+x} + 1} \] Now, we rewrite the limit: \[ \lim_{x \to -1} \frac{\sin(x^3 + bx^2 + cx + d)}{\frac{x + 1}{\sqrt{2+x} + 1} (\log_e(x+2))^2} \] This simplifies to: \[ \lim_{x \to -1} \frac{\sin(x^3 + bx^2 + cx + d)(\sqrt{2+x} + 1)}{(x + 1)(\log_e(x+2))^2} \] ### Step 4: Determine the Behavior of the Numerator For the limit to exist, the argument of the sine function must approach 0 as \( x \to -1 \): \[ x^3 + bx^2 + cx + d \to 0 \] Substituting \( x = -1 \): \[ (-1)^3 + b(-1)^2 + c(-1) + d = -1 + b - c + d = 0 \] Thus, we have: \[ b - c + d = 1 \quad \text{(Equation 1)} \] ### Step 5: Analyze the Logarithm Next, we analyze \( \log_e(x+2) \): \[ \log_e(x+2) = \log_e(1) = 0 \text{ as } x \to -1 \] Using the expansion \( \log_e(1 + u) \approx u \) for small \( u \): \[ \log_e(x+2) \approx x + 1 \text{ as } x \to -1 \] Thus, \( (\log_e(x+2))^2 \approx (x + 1)^2 \). ### Step 6: Substitute and Simplify Substituting back into the limit: \[ \lim_{x \to -1} \frac{\sin(x^3 + bx^2 + cx + d)(\sqrt{2+x} + 1)}{(x + 1)(x + 1)^2} \] This simplifies to: \[ \lim_{x \to -1} \frac{\sin(x^3 + bx^2 + cx + d)(\sqrt{2+x} + 1)}{(x + 1)^3} \] ### Step 7: Use the Sine Limit Using the fact that \( \lim_{u \to 0} \frac{\sin(u)}{u} = 1 \): \[ \lim_{x \to -1} \frac{x^3 + bx^2 + cx + d}{(x + 1)^3} = \text{constant} \] This means \( x^3 + bx^2 + cx + d \) must be of the form \( k(x + 1)^3 \). ### Step 8: Coefficients Comparison We equate coefficients: \[ x^3 + bx^2 + cx + d = k(x + 1)^3 = k(x^3 + 3x^2 + 3x + 1) \] From this, we can equate coefficients: - \( b = 3k \) - \( c = 3k \) - \( d = k \) ### Step 9: Solve for \( b, c, d \) From Equation 1: \[ 3k - 3k + k = 1 \implies k = 1 \] Thus: - \( b = 3 \) - \( c = 3 \) - \( d = 1 \) ### Step 10: Find \( l \) Now, substituting back, we find \( l \): \[ l = 2 \quad \text{(as derived from the limit)} \] ### Final Calculation Now we calculate \( b + d + l \): \[ b + d + l = 3 + 1 + 2 = 6 \] ### Answer Thus, the final answer is: \[ \boxed{6} \]

To solve the limit problem step by step, we will analyze the given expression and find the values of \( b \), \( d \), and \( l \). ### Step 1: Analyze the Limit We start with the limit: \[ \lim_{x \to -1} \frac{\sin(x^3 + bx^2 + cx + d)}{(\sqrt{2+x} - 1)(\log_e(x+2))^2} \] For this limit to exist, both the numerator and denominator must approach 0 as \( x \to -1 \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sin(picos^2x))/(x^2) equals

If L=lim_(x->0) (asinx-bx+cx^2+x^3)/(2x^2log(1+x)-2x^3+x^4) exists and is finie then a=, b=, c= L=

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

If lim_(xrarr0)(x^(-3)sin3x+a x^(-2)+b) exists and is equal to 0, then (a) a=-3 and b=9/2 (b) a=3 and b=9/2 (c) a=-3 and b=-9/2 (d) a=3 and b=-9/2

lim_(xrarr1)(sin(e^(x-1)-1))/(log x) is equal to

If L=lim_(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x)) , then the value of 3L is equal to

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

Evaluate: lim_(xrarr1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3)

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

lim_(xrarr0) (2^(|x|)e^(|x|)-|x|log_(2)2-1)/(xtanx) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. lim(xrarr 1) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

    Text Solution

    |

  2. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |

  3. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  4. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |

  5. The value of lim(xrarr0) (loge(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

    Text Solution

    |

  6. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  7. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  8. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  9. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  10. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  11. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  12. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  13. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  14. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  15. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  16. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  17. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  18. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  19. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  20. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |