Home
Class 12
MATHS
If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, t...

If `lim_(xrarr1)(ax^2+bx+c)/((x-1)^2)=2`, then `lim_(xrarr1)((x-a)(x-b)(x-c))/(x+1)` , is

A

2

B

`(5)/(2)`

C

`(7)/(2)`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given limit: \[ \lim_{x \to 1} \frac{ax^2 + bx + c}{(x-1)^2} = 2 \] ### Step 1: Identify the form of the limit When we substitute \(x = 1\) in the denominator, we find that \((1 - 1)^2 = 0\). We also need to evaluate the numerator: \[ a(1)^2 + b(1) + c = a + b + c \] For the limit to be in the indeterminate form \( \frac{0}{0} \), we require: \[ a + b + c = 0 \] ### Step 2: Apply L'Hôpital's Rule Since we have established that both the numerator and denominator approach 0 as \(x\) approaches 1, we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}(ax^2 + bx + c) = 2ax + b \] \[ \text{Denominator: } \frac{d}{dx}((x-1)^2) = 2(x-1) \] Now we rewrite the limit: \[ \lim_{x \to 1} \frac{2ax + b}{2(x-1)} \] ### Step 3: Evaluate the new limit Substituting \(x = 1\) gives: \[ \text{Numerator: } 2a(1) + b = 2a + b \] \[ \text{Denominator: } 2(1-1) = 0 \] Again, we have a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again: \[ \text{Differentiate again: } \] \[ \text{Numerator: } \frac{d}{dx}(2ax + b) = 2a \] \[ \text{Denominator: } \frac{d}{dx}(2(x-1)) = 2 \] Now we have: \[ \lim_{x \to 1} \frac{2a}{2} = a \] ### Step 4: Set the limit equal to 2 Since we know this limit equals 2: \[ a = 2 \] ### Step 5: Find \(b\) and \(c\) Using the condition \(a + b + c = 0\): \[ 2 + b + c = 0 \implies b + c = -2 \quad (1) \] Now using \(2a + b = 0\): \[ 2(2) + b = 0 \implies 4 + b = 0 \implies b = -4 \quad (2) \] Substituting \(b = -4\) into equation (1): \[ -4 + c = -2 \implies c = 2 \] ### Step 6: Values of \(a\), \(b\), and \(c\) We have: \[ a = 2, \quad b = -4, \quad c = 2 \] ### Step 7: Evaluate the second limit Now we need to evaluate: \[ \lim_{x \to 1} \frac{(x-a)(x-b)(x-c)}{x+1} \] Substituting the values of \(a\), \(b\), and \(c\): \[ \lim_{x \to 1} \frac{(x-2)(x+4)(x-2)}{x+1} \] ### Step 8: Substitute \(x = 1\) Now substituting \(x = 1\): \[ \frac{(1-2)(1+4)(1-2)}{1+1} = \frac{(-1)(5)(-1)}{2} = \frac{5}{2} \] ### Final Answer Thus, the limit evaluates to: \[ \frac{5}{2} \]

To solve the problem step by step, we start with the given limit: \[ \lim_{x \to 1} \frac{ax^2 + bx + c}{(x-1)^2} = 2 \] ### Step 1: Identify the form of the limit When we substitute \(x = 1\) in the denominator, we find that \((1 - 1)^2 = 0\). We also need to evaluate the numerator: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr1)(sqrt1-cos2(x-1))/(x-1) , is

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_(xrarr-2)((1)/(x)+(1)/(2))/(x+2)

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr 1) (sqrt(4+x)-sqrt(5))/(x-1)

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. The value of lim(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)), is

    Text Solution

    |

  2. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  3. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |

  4. The value of lim(xrarr0) (loge(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

    Text Solution

    |

  5. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  6. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  7. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  8. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  9. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  10. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  11. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  12. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  13. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  14. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  15. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  16. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  17. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  18. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  19. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  20. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |