Home
Class 12
MATHS
The value of lim(xrarr0) (loge(1+x)-x)/(...

The value of `lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e})` equal to

A

`e^e`

B

`e`

C

`1//e`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the limit \[ \lim_{x \to 0} \frac{\log(1+x) - x}{x \left( (1+x)^{\frac{1}{x}} - e \right)}, \] we will use the Taylor series expansion for \(\log(1+x)\) and analyze the expression step by step. ### Step 1: Expand \(\log(1+x)\) The Taylor series expansion for \(\log(1+x)\) around \(x=0\) is: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] ### Step 2: Substitute the expansion into the limit Substituting this expansion into the limit gives: \[ \log(1+x) - x = \left( x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots \right) - x = -\frac{x^2}{2} + \frac{x^3}{3} - \ldots \] Thus, the numerator becomes: \[ -\frac{x^2}{2} + O(x^3) \] ### Step 3: Analyze the denominator Next, we need to analyze the denominator \(x \left( (1+x)^{\frac{1}{x}} - e \right)\). Using the limit definition, we know that: \[ \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e. \] To find the expansion of \((1+x)^{\frac{1}{x}}\) as \(x \to 0\), we can rewrite it as: \[ (1+x)^{\frac{1}{x}} = e^{\frac{\log(1+x)}{x}}. \] Using the expansion for \(\log(1+x)\): \[ \frac{\log(1+x)}{x} = 1 - \frac{x}{2} + \frac{x^2}{3} - \ldots \] Thus, we have: \[ (1+x)^{\frac{1}{x}} \approx e^{1 - \frac{x}{2} + O(x^2)} = e \cdot e^{-\frac{x}{2} + O(x^2)}. \] Using the expansion \(e^y \approx 1 + y\) for small \(y\): \[ e^{-\frac{x}{2} + O(x^2)} \approx 1 - \frac{x}{2} + O(x^2). \] Therefore: \[ (1+x)^{\frac{1}{x}} - e \approx e \left( -\frac{x}{2} + O(x^2) \right). \] ### Step 4: Substitute back into the limit Now substituting this back into our limit, we have: \[ x \left( (1+x)^{\frac{1}{x}} - e \right) \approx x \left( -\frac{ex}{2} + O(x^2) \right) = -\frac{ex^2}{2} + O(x^3). \] ### Step 5: Combine the results Now substituting both the numerator and denominator into the limit: \[ \lim_{x \to 0} \frac{-\frac{x^2}{2} + O(x^3)}{-\frac{ex^2}{2} + O(x^3)}. \] As \(x \to 0\), the \(O(x^3)\) terms become negligible, and we can simplify: \[ \lim_{x \to 0} \frac{-\frac{x^2}{2}}{-\frac{ex^2}{2}} = \lim_{x \to 0} \frac{1}{e} = \frac{1}{e}. \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{e}. \]

To find the value of the limit \[ \lim_{x \to 0} \frac{\log(1+x) - x}{x \left( (1+x)^{\frac{1}{x}} - e \right)}, \] we will use the Taylor series expansion for \(\log(1+x)\) and analyze the expression step by step. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarre) (logx-1)/(x-e) , is

The value of lim_(xrarr0) (e^(ax)-e^(bx))/(x) ,is

lim_(xrarr0)(x^3 log x)

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

lim_(x rarr0)(log_(e)(1+x)-x)/(x^(2))=-(1)/(2)

The value of lim_(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

lim_(xrarr0) ((x+1)^(5)-1)/(x)

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If lim(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){loge(x+2)}^2) exis...

    Text Solution

    |

  2. If lim(xrarr1)(ax^2+bx+c)/((x-1)^2)=2, then lim(xrarr1)((x-a)(x-b)(x-c...

    Text Solution

    |

  3. The value of lim(xrarr0) (loge(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to

    Text Solution

    |

  4. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  5. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  6. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  7. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  8. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  9. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  10. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  11. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  12. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  13. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  14. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  15. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  16. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  17. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  18. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  19. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  20. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |