Home
Class 12
MATHS
The value of lim(xrarr1){(x^n-1)/(n(x-1)...

The value of `lim_(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1))`, is

A

`e^(1//2)`

B

`e^((n)/(x-1))`

C

`e^((n-1)/(2))`

D

`e^((n+1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to 1} \left( \frac{x^n - 1}{n(x - 1)} \right)^{\frac{1}{x - 1}} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form: \[ L = \lim_{x \to 1} \left( \frac{x^n - 1}{n(x - 1)} \right)^{\frac{1}{x - 1}}. \] ### Step 2: Factor \( x^n - 1 \) Using the factorization of \( x^n - 1 \), we can express it as: \[ x^n - 1 = (x - 1)(1 + x + x^2 + \ldots + x^{n-1}). \] Thus, we can rewrite the limit as: \[ L = \lim_{x \to 1} \left( \frac{(x - 1)(1 + x + x^2 + \ldots + x^{n-1})}{n(x - 1)} \right)^{\frac{1}{x - 1}}. \] ### Step 3: Cancel \( x - 1 \) Now, we can cancel \( x - 1 \) in the numerator and denominator: \[ L = \lim_{x \to 1} \left( \frac{1 + x + x^2 + \ldots + x^{n-1}}{n} \right)^{\frac{1}{x - 1}}. \] ### Step 4: Simplify the expression We can express the sum \( 1 + x + x^2 + \ldots + x^{n-1} \) as: \[ 1 + x + x^2 + \ldots + x^{n-1} = \frac{x^n - 1}{x - 1}. \] So, we have: \[ L = \lim_{x \to 1} \left( \frac{\frac{x^n - 1}{x - 1}}{n} \right)^{\frac{1}{x - 1}}. \] ### Step 5: Rewrite using limits Now, we can express the limit in a form suitable for applying the exponential limit: \[ L = \lim_{x \to 1} \left( \frac{x^n - 1}{n(x - 1)} \right)^{\frac{1}{x - 1}}. \] This can be evaluated using the fact that if \( f(x) \to 1 \) and \( g(x) \to 0 \) as \( x \to a \), then: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x)(f(x) - 1)}. \] ### Step 6: Calculate \( f(x) - 1 \) We find \( f(x) - 1 \): \[ f(x) = \frac{x^n - 1}{n(x - 1)} \quad \text{and} \quad f(1) = \frac{0}{0} \text{ (indeterminate form)}. \] Using L'Hôpital's rule or Taylor expansion around \( x = 1 \), we find: \[ f(x) - 1 \approx \frac{1 + 2 + 3 + \ldots + (n-1)}{n} \cdot (x - 1). \] ### Step 7: Evaluate the limit Now, we can evaluate: \[ L = e^{\lim_{x \to 1} \frac{1}{x - 1} \cdot \left( \frac{n(n-1)}{2n} (x - 1) \right)} = e^{\frac{(n-1)}{2}}. \] ### Final Result Thus, the final result is: \[ L = e^{\frac{n - 1}{2}}. \]

To solve the limit \( L = \lim_{x \to 1} \left( \frac{x^n - 1}{n(x - 1)} \right)^{\frac{1}{x - 1}} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form: \[ L = \lim_{x \to 1} \left( \frac{x^n - 1}{n(x - 1)} \right)^{\frac{1}{x - 1}}. \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarre) (logx-1)/(x-e) , is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

Evaluate : lim_(xrarr0)((1-x)^(n)-1)/(x)

The value of lim_(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

lim_(xrarr0) ((x+1)^(5)-1)/(x)

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

The value of lim_(xrarr1) (logx)/(sin pi x) , is

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

The value of lim_(xrarr0) (x(5^x-1))/(1-cos x) , is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. The value of lim(xrarr0) (sin(sinx)-tan(sinx))/(sin^3(sinx)), is

    Text Solution

    |

  2. The value of lim(xrarr oo) x{(1)/(e)-((x)/(x+1))^x} , is

    Text Solution

    |

  3. The value of lim(xrarr1){(x^n-1)/(n(x-1))}^((1)/(x-1)), is

    Text Solution

    |

  4. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  5. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  6. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  7. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  8. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  9. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  10. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  11. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  12. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  13. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  14. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  15. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  16. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  17. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  18. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  19. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  20. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |