Home
Class 12
MATHS
If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+...

If `a gt 0` and `lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0`, then `(a,b)` lies on the line.

A

`x-y+3=0`

B

`3x+4y-5=0`

C

`x+6y+2=0`

D

`x+2y+3=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the limit given and find the values of \(a\) and \(b\) such that the limit approaches zero. Given: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - (ax + b) \right) = 0 \] ### Step 1: Simplify the expression inside the limit We can start by rewriting the expression: \[ \sqrt{x^2 + x + 1} - (ax + b) \] As \(x\) approaches infinity, the dominant term inside the square root is \(x^2\). Thus, we can factor \(x^2\) out: \[ \sqrt{x^2(1 + \frac{1}{x} + \frac{1}{x^2})} = x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \] So we rewrite the limit: \[ \lim_{x \to \infty} \left( x\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - (ax + b) \right) \] ### Step 2: Factor out \(x\) Now we can factor \(x\) from the limit: \[ \lim_{x \to \infty} \left( x \left( \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} - a \right) - b \right) \] ### Step 3: Analyze the limit For the limit to equal zero as \(x\) approaches infinity, the term inside the parentheses must approach zero. Therefore: \[ \sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} \to 1 \quad \text{as } x \to \infty \] Thus, we need: \[ 1 - a = 0 \implies a = 1 \] ### Step 4: Substitute \(a\) back into the limit Now substituting \(a = 1\) into the limit: \[ \lim_{x \to \infty} \left( x(1 - 1) - b \right) = -b \] For this limit to equal zero, we must have: \[ -b = 0 \implies b = 0 \] ### Step 5: Conclusion Thus, we find that: \[ (a, b) = (1, 0) \] ### Step 6: Determine the line Now we need to check if the point \((1, 0)\) lies on the given lines. 1. For the line \(x - y + 3 = 0\): \[ 1 - 0 + 3 = 4 \quad \text{(not equal to 0)} \] 2. For the line \(3x + 4y - 5 = 0\): \[ 3(1) + 4(0) - 5 = 3 - 5 = -2 \quad \text{(not equal to 0)} \] ### Final Result The point \((1, 0)\) does not lie on either of the lines provided in the options.

To solve the problem, we need to analyze the limit given and find the values of \(a\) and \(b\) such that the limit approaches zero. Given: \[ \lim_{x \to \infty} \left( \sqrt{x^2 + x + 1} - (ax + b) \right) = 0 \] ### Step 1: Simplify the expression inside the limit ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=

lim_(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

lim_(xrarr0) frac{sqrt(1+ x} -1}{x}

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

If lim_(xto oo){(x^2+1)/(x+1)-(ax+b)}to oo , then

If lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2 , then

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |