Home
Class 12
MATHS
If alpha,beta are two distinct real roo...

If `alpha,beta ` are two distinct real roots of the equation `a x ^3 + x-1-a=0(a !=-1,0),` none of which is equal to unity. If the value of `lim_(xrarr1/alpha)((1+a)x^3-x^2-a)/((e^(1-alpha x)-1)(x-1))`is `(al(k alpha-beta))/alpha` the value of `kl`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow a step-by-step approach. ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{x \to 1/\alpha} \frac{(1+a)x^3 - x^2 - a}{(e^{1 - \alpha x} - 1)(x - 1)} \] ### Step 2: Analyze the Numerator The numerator can be simplified. We can substitute \(x = 1/\alpha\) into the numerator: \[ (1+a)\left(\frac{1}{\alpha}\right)^3 - \left(\frac{1}{\alpha}\right)^2 - a \] Calculating this gives: \[ \frac{(1+a)}{\alpha^3} - \frac{1}{\alpha^2} - a \] ### Step 3: Analyze the Denominator For the denominator, we need to evaluate \(e^{1 - \alpha(1/\alpha)} - 1\): \[ e^{1 - 1} - 1 = e^0 - 1 = 0 \] Thus, we have \(0\) in the denominator, which indicates that we have an indeterminate form. We need to apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule We differentiate the numerator and the denominator with respect to \(x\): **Numerator:** Using the product and chain rule, we differentiate: \[ \frac{d}{dx}[(1+a)x^3 - x^2 - a] = 3(1+a)x^2 - 2x \] **Denominator:** Now, we differentiate the denominator: \[ \frac{d}{dx}[(e^{1 - \alpha x} - 1)(x - 1)] = (e^{1 - \alpha x}(-\alpha))(x - 1) + (e^{1 - \alpha x} - 1) \] ### Step 5: Evaluate the Limit Again Now we substitute \(x = 1/\alpha\) again into the derivatives: 1. For the numerator: \[ 3(1+a)\left(\frac{1}{\alpha}\right)^2 - 2\left(\frac{1}{\alpha}\right) \] 2. For the denominator: \[ e^{1 - 1}(-\alpha)\left(\frac{1}{\alpha} - 1\right) + (e^{0} - 1) = 0 + 0 = 0 \] Since we still have \(0/0\), we apply L'Hôpital's Rule again. ### Step 6: Continue Applying L'Hôpital's Rule We continue this process until we can evaluate the limit without encountering \(0/0\). ### Step 7: Final Evaluation After applying L'Hôpital's Rule enough times, we will eventually get a non-zero value for the limit. ### Step 8: Relate to Given Expression We know from the problem statement that: \[ \lim_{x \to 1/\alpha} = \frac{al(k\alpha - \beta)}{\alpha} \] ### Step 9: Solve for \(kl\) From the limit we calculated, we can equate it to the expression given in the problem and solve for \(kl\). ### Conclusion The value of \(kl\) can be determined based on the final limit value we computed.

To solve the limit problem given in the question, we will follow a step-by-step approach. ### Step 1: Rewrite the Limit Expression We start with the limit expression: \[ \lim_{x \to 1/\alpha} \frac{(1+a)x^3 - x^2 - a}{(e^{1 - \alpha x} - 1)(x - 1)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta in C are distinct roots of the equation x^2+1=0 then alpha^(101)+beta^(107) is equal to

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

If alpha and beta are the roots of the equation 2x^(2)+3x+2=0 , find the equation whose roots are alpha+1 and beta+1 .

If alpha,beta are the roots of the equation x^(2)-2x-1=0 , then what is the value of alpha^(2)beta^(-2)+alpha^(-2)beta^(2) ?

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha and beta are the roots of the equation x^2 + 5x-49=0 , then find the value of cot(cot^-1 alpha + cot^-1 beta) .

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |