Home
Class 12
MATHS
Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)...

Let `f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x))`. If `lim_(xrarr oo) f(x)=l` and `lim_(xrarr-oo)f(x)=m`, then

A

`l=m`

B

`l=2m`

C

`2l=m`

D

`l+m=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limits of the function \( f(x) = \frac{\log_e(x^2 + e^x)}{\log_e(x^4 + e^{2x})} \) as \( x \) approaches infinity and negative infinity. ### Step 1: Evaluate the limit as \( x \to \infty \) We start with: \[ f(x) = \frac{\log_e(x^2 + e^x)}{\log_e(x^4 + e^{2x})} \] As \( x \to \infty \), both the numerator and denominator approach infinity: - In the numerator, \( e^x \) dominates \( x^2 \), so \( \log_e(x^2 + e^x) \approx \log_e(e^x) = x \). - In the denominator, \( e^{2x} \) dominates \( x^4 \), so \( \log_e(x^4 + e^{2x}) \approx \log_e(e^{2x}) = 2x \). Thus, we can write: \[ f(x) \approx \frac{x}{2x} = \frac{1}{2} \] So, \[ \lim_{x \to \infty} f(x) = \frac{1}{2} \] ### Step 2: Evaluate the limit as \( x \to -\infty \) Now we consider the limit as \( x \to -\infty \): \[ f(x) = \frac{\log_e(x^2 + e^x)}{\log_e(x^4 + e^{2x})} \] As \( x \to -\infty \): - In the numerator, \( e^x \) approaches 0, so \( x^2 \) dominates, and \( \log_e(x^2 + e^x) \approx \log_e(x^2) = 2\log_e(-x) \). - In the denominator, \( e^{2x} \) also approaches 0, so \( x^4 \) dominates, and \( \log_e(x^4 + e^{2x}) \approx \log_e(x^4) = 4\log_e(-x) \). Thus, we can write: \[ f(x) \approx \frac{2\log_e(-x)}{4\log_e(-x)} = \frac{1}{2} \] So, \[ \lim_{x \to -\infty} f(x) = \frac{1}{2} \] ### Conclusion We have found: \[ l = \lim_{x \to \infty} f(x) = \frac{1}{2} \] \[ m = \lim_{x \to -\infty} f(x) = \frac{1}{2} \] Thus, \( l = m \).

To solve the problem, we need to find the limits of the function \( f(x) = \frac{\log_e(x^2 + e^x)}{\log_e(x^4 + e^{2x})} \) as \( x \) approaches infinity and negative infinity. ### Step 1: Evaluate the limit as \( x \to \infty \) We start with: \[ f(x) = \frac{\log_e(x^2 + e^x)}{\log_e(x^4 + e^{2x})} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)e^(-x)x^(2)

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

lim_(xrarr oo) (1+(2)/(x))^x equals

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

If f(x)=|log_(e) x|,then

If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then evaluate : lim_(xrarr0) f(x) "and" lim_(xrarr1) f(x)

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

The value of lim_(xrarre) (logx-1)/(x-e) , is

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |