Home
Class 12
MATHS
lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,...

`lim_(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0` equals

A

1

B

`sqrt(pq)`

C

`pq`

D

`(pq)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{n \to \infty} \left( \frac{n\sqrt{p} + n\sqrt{q}}{2} \right)^n \) where \( p, q > 0 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{n \to \infty} \left( \frac{n\sqrt{p} + n\sqrt{q}}{2} \right)^n \] This can be simplified to: \[ L = \lim_{n \to \infty} \left( \frac{n(\sqrt{p} + \sqrt{q})}{2} \right)^n \] ### Step 2: Factor out \( n \) Now, we can factor out \( n \): \[ L = \lim_{n \to \infty} \left( n \cdot \frac{\sqrt{p} + \sqrt{q}}{2} \right)^n \] ### Step 3: Analyze the limit As \( n \to \infty \), \( n \cdot \frac{\sqrt{p} + \sqrt{q}}{2} \) approaches infinity since \( \frac{\sqrt{p} + \sqrt{q}}{2} > 0 \). Therefore, we can express this as: \[ L = \lim_{n \to \infty} n^n \left( \frac{\sqrt{p} + \sqrt{q}}{2} \right)^n \] ### Step 4: Use the exponential form To analyze this limit, we can rewrite it in exponential form: \[ L = \lim_{n \to \infty} e^{n \ln \left( n \cdot \frac{\sqrt{p} + \sqrt{q}}{2} \right)} \] ### Step 5: Simplify the logarithm Now we simplify the logarithm: \[ \ln \left( n \cdot \frac{\sqrt{p} + \sqrt{q}}{2} \right) = \ln n + \ln \left( \frac{\sqrt{p} + \sqrt{q}}{2} \right) \] Thus, \[ L = \lim_{n \to \infty} e^{n \left( \ln n + \ln \left( \frac{\sqrt{p} + \sqrt{q}}{2} \right) \right)} \] ### Step 6: Analyze the limit of the exponent The term \( n \ln n \) grows much faster than \( n \ln \left( \frac{\sqrt{p} + \sqrt{q}}{2} \right) \) as \( n \to \infty \). Therefore, we can conclude: \[ L \to \infty \] ### Final Result Thus, the limit diverges to infinity: \[ L = \infty \]

To solve the limit problem \( \lim_{n \to \infty} \left( \frac{n\sqrt{p} + n\sqrt{q}}{2} \right)^n \) where \( p, q > 0 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{n \to \infty} \left( \frac{n\sqrt{p} + n\sqrt{q}}{2} \right)^n \] This can be simplified to: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(nrarr oo) ((nsqrt(a)+nsqrt(b))/(2))^n,a,b,gt 0 equals

The value of lim_(x to 1) ((p)/(1-x^(p))-(q)/(1-xq)),p,q,inN, equals

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of lim_(n->oo)(sqrt(1)+sqrt(2)+sqrt(3)+.....+sqrt(n))/(nsqrt(n)) is

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

The value of lim_(x to1)(p/(1-x^p)-q/(1-x^q)),p ,q , in N , equal (a) (p+q)/2 (b) (p q)/2 (c) (p-q)/2 (d) sqrt(p/q)

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |