Home
Class 12
MATHS
If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3...

`If("lim")_(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e` range of `x` is (where `n in N)dot` (a) (2,5) (b) (1,5) (c) `-5,5)` (d) `(-oo,oo)`

A

3

B

4

C

5

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we need to analyze the expression step by step. The limit we need to evaluate is: \[ \lim_{n \to \infty} \frac{n \cdot 3^n}{n(x-2)^n + n \cdot 3^{n+1} - 3^n} \] ### Step 1: Simplify the Expression First, we can rewrite the limit expression: \[ \lim_{n \to \infty} \frac{n \cdot 3^n}{n(x-2)^n + n \cdot 3^{n+1} - 3^n} = \lim_{n \to \infty} \frac{n \cdot 3^n}{n(x-2)^n + n \cdot 3 \cdot 3^n - 3^n} \] ### Step 2: Factor Out \(3^n\) Next, we can factor \(3^n\) out of the denominator: \[ = \lim_{n \to \infty} \frac{n \cdot 3^n}{3^n \left( n \frac{(x-2)^n}{3^n} + n \cdot 3 - 1 \right)} \] This simplifies to: \[ = \lim_{n \to \infty} \frac{n}{n \frac{(x-2)^n}{3^n} + n \cdot 3 - 1} \] ### Step 3: Analyze the Limit Now we need to analyze the behavior of \(\frac{(x-2)^n}{3^n}\) as \(n\) approaches infinity. - If \(|x-2| < 3\), then \(\frac{(x-2)^n}{3^n} \to 0\). - If \(|x-2| = 3\), then \(\frac{(x-2)^n}{3^n} \to 1\). - If \(|x-2| > 3\), then \(\frac{(x-2)^n}{3^n} \to \infty\). ### Step 4: Evaluate the Limit Based on Cases 1. **Case 1**: If \(|x-2| < 3\): - The limit becomes: \[ \lim_{n \to \infty} \frac{n}{0 + 3n - 1} = \lim_{n \to \infty} \frac{n}{3n} = \frac{1}{3} \] 2. **Case 2**: If \(|x-2| = 3\): - The limit becomes: \[ \lim_{n \to \infty} \frac{n}{n + 3n - 1} = \lim_{n \to \infty} \frac{n}{4n - 1} = \frac{1}{4} \] 3. **Case 3**: If \(|x-2| > 3\): - The limit diverges to infinity. ### Step 5: Determine the Range of \(x\) For the limit to equal \(\frac{1}{3}\), we require: \[ |x-2| < 3 \implies -3 < x - 2 < 3 \implies -1 < x < 5 \] Thus, the range of \(x\) is: \[ (-1, 5) \] ### Final Answer The correct option that matches our derived range is: (b) \((1, 5)\)

To solve the limit problem given in the question, we need to analyze the expression step by step. The limit we need to evaluate is: \[ \lim_{n \to \infty} \frac{n \cdot 3^n}{n(x-2)^n + n \cdot 3^{n+1} - 3^n} \] ### Step 1: Simplify the Expression First, we can rewrite the limit expression: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3 , then the range of x is (where n in N )

If lim(n->oo)(n*3^n)/(n(x-2)^n +n*3^(n+1)-3^n) = 1/3 then the range of x is (where n epsilon N )

If lim_(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" epsilonN then the number of integers in the range of x is (a) 0 (b) 2 (c) 3 (d) 1

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(x->oo)(1-x+x.e^(1/n))^n

If lim_(n->oo)1/((sin^(-1)x)^("n")+1)=1 ,t h e n find the value of x.

Evaluate: ("lim")_(n->oo)(4^n+5^n)^(1/n)

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |