Home
Class 12
MATHS
If A,B,C are positive real numbers such ...

If A,B,C are positive real numbers such that `lim_(xrarr oo) (sqrt(Ax^2+Bx)-Cx)=2, then (BC)/(A)` equals

A

4

B

2

C

`(1)/(2)`

D

`none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{BC}{A}\) given that \[ \lim_{x \to \infty} \left( \sqrt{Ax^2 + Bx} - Cx \right) = 2 \] ### Step-by-Step Solution: 1. **Rewrite the Limit Expression**: We start with the expression inside the limit: \[ \sqrt{Ax^2 + Bx} - Cx \] To simplify this, we can rationalize it by multiplying and dividing by the conjugate: \[ \frac{(\sqrt{Ax^2 + Bx} - Cx)(\sqrt{Ax^2 + Bx} + Cx)}{\sqrt{Ax^2 + Bx} + Cx} \] This gives us: \[ \frac{(Ax^2 + Bx) - C^2x^2}{\sqrt{Ax^2 + Bx} + Cx} \] 2. **Simplify the Numerator**: The numerator simplifies to: \[ (A - C^2)x^2 + Bx \] Thus, we have: \[ \frac{(A - C^2)x^2 + Bx}{\sqrt{Ax^2 + Bx} + Cx} \] 3. **Analyze the Limit**: As \(x\) approaches infinity, the dominant term in the numerator is \((A - C^2)x^2\) and in the denominator, it is \(\sqrt{Ax^2}\) which behaves like \(\sqrt{A}x\). Therefore, we can write: \[ \lim_{x \to \infty} \frac{(A - C^2)x^2 + Bx}{\sqrt{Ax^2 + Bx} + Cx} = \lim_{x \to \infty} \frac{(A - C^2)x^2}{\sqrt{A}x + Cx} \] Simplifying further, we get: \[ \lim_{x \to \infty} \frac{(A - C^2)x}{\sqrt{A} + C} \] 4. **Set the Limit Equal to 2**: For the limit to equal 2, we need: \[ \frac{(A - C^2)}{\sqrt{A} + C} = 2 \] 5. **Solve for \(A\) and \(C\)**: Rearranging gives us: \[ A - C^2 = 2(\sqrt{A} + C) \] This can be rearranged to: \[ A - 2\sqrt{A} - 2C - C^2 = 0 \] 6. **Use the Quadratic Formula**: Treating this as a quadratic in terms of \(\sqrt{A}\): \[ (\sqrt{A})^2 - 2\sqrt{A} - (2C + C^2) = 0 \] Using the quadratic formula, we find: \[ \sqrt{A} = \frac{2 \pm \sqrt{4 + 4(2C + C^2)}}{2} = 1 \pm \sqrt{2 + C^2} \] Since \(A\) is positive, we take the positive root: \[ \sqrt{A} = 1 + \sqrt{2 + C^2} \] 7. **Find the Ratio \(\frac{BC}{A}\)**: From the limit condition, we also have: \[ \frac{B}{C} = 4 \implies B = 4C \] Now substituting \(A = C^2\): \[ \frac{BC}{A} = \frac{(4C)C}{C^2} = \frac{4C^2}{C^2} = 4 \] ### Final Answer: Thus, the value of \(\frac{BC}{A}\) is: \[ \boxed{4} \]

To solve the problem, we need to find the value of \(\frac{BC}{A}\) given that \[ \lim_{x \to \infty} \left( \sqrt{Ax^2 + Bx} - Cx \right) = 2 \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim _(xrarr oo) (sqrt(x^2+x+1)-sqrt(x^2+1))=

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

lim_(xrarr oo) {3sqrt((x+a)(x+b)(x+c))-x}=

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

lim_(xrarr oo) (1+(2)/(x))^x equals

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

lim_(xrarr0) (ax+b)/(cx+1)

If lim_(xrarr0)(x^3)/(sqrt(a+x)(bx-sinx))=1,agt0 , then a+b is equal to

lim_(xrarr oo) ((x+5)/(x-1))^(x) is equal to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |