Home
Class 12
MATHS
Let kgt0 and lambda =lim(xrarr0) (k(1-4s...

Let `kgt0 and lambda =lim_(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^2))` be finite. Then the value of `lambdak`, is

A

`lambda=8,k=(1)/(2)`

B

`lambda=8,k=(1)/(4)`

C

`lambda=4, k=(1)/(2)`

D

`6lambda=4,k=(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lambda = \lim_{x \to 0} \frac{k(1 - 4\sqrt{k^2 - x^2})}{x^2 \sqrt{k^2 - x^2}} \] where \( k > 0 \) and find the value of \( \lambda k \). ### Step-by-Step Solution: **Step 1: Analyze the limit.** As \( x \to 0 \), \( \sqrt{k^2 - x^2} \) approaches \( k \). Thus, we can rewrite the limit: \[ \lambda = \lim_{x \to 0} \frac{k(1 - 4\sqrt{k^2 - x^2})}{x^2 \sqrt{k^2 - x^2}} = \lim_{x \to 0} \frac{k(1 - 4k)}{x^2 k} = \lim_{x \to 0} \frac{1 - 4k}{x^2} \] **Step 2: Ensure the limit is finite.** For \( \lambda \) to be finite, the numerator must equal zero when \( x \to 0 \). Therefore, we set: \[ 1 - 4k = 0 \implies k = \frac{1}{4} \] **Step 3: Substitute \( k \) back into the limit.** Now substitute \( k = \frac{1}{4} \) back into the limit to find \( \lambda \): \[ \lambda = \lim_{x \to 0} \frac{\frac{1}{4}(1 - 4\sqrt{\left(\frac{1}{4}\right)^2 - x^2})}{x^2 \sqrt{\left(\frac{1}{4}\right)^2 - x^2}} \] Calculating \( \left(\frac{1}{4}\right)^2 = \frac{1}{16} \): \[ \lambda = \lim_{x \to 0} \frac{\frac{1}{4}(1 - 4\sqrt{\frac{1}{16} - x^2})}{x^2 \sqrt{\frac{1}{16} - x^2}} \] **Step 4: Simplify the limit.** Now simplify the expression: \[ \lambda = \lim_{x \to 0} \frac{\frac{1}{4}(1 - 4\sqrt{\frac{1}{16} - x^2})}{x^2 \sqrt{\frac{1}{16} - x^2}} \] Rationalizing the numerator: \[ 1 - 4\sqrt{\frac{1}{16} - x^2} = 1 - 4\sqrt{\frac{1}{16}(1 - 16x^2)} = 1 - \frac{4}{4}\sqrt{1 - 16x^2} = 1 - \sqrt{1 - 16x^2} \] **Step 5: Apply the limit.** Now we can apply the limit: \[ \lambda = \lim_{x \to 0} \frac{(1 - \sqrt{1 - 16x^2})}{x^2 \cdot \frac{1}{4}\sqrt{1 - 16x^2}} = \lim_{x \to 0} \frac{16x^2}{x^2 \cdot \frac{1}{4}\sqrt{1 - 16x^2}} = \lim_{x \to 0} \frac{16}{\frac{1}{4}\sqrt{1 - 16x^2}} = 64 \] **Step 6: Calculate \( \lambda k \).** Now we find \( \lambda k \): \[ \lambda k = 64 \cdot \frac{1}{4} = 16 \] ### Final Answer: \[ \lambda k = 16 \]

To solve the problem, we need to evaluate the limit: \[ \lambda = \lim_{x \to 0} \frac{k(1 - 4\sqrt{k^2 - x^2})}{x^2 \sqrt{k^2 - x^2}} \] where \( k > 0 \) and find the value of \( \lambda k \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (sqrt(x^(2)+1)-1)/(sqrt(x^(2)+9)-3)?

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(xrarr0) (sqrt(1+x)-1)/(x)=?

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

Evaluate lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |