Home
Class 12
MATHS
If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx ex...

If `lim_(xrarroo) (8x^3+mx^2)^(1//3)-nx` exists and is equal to 1 , then the vlaue of `(m)/(n)` is

A

`(1)/(6)`

B

6

C

3

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{x \to \infty} \left( (8x^3 + mx^2)^{\frac{1}{3}} - nx \right) \] and determine the values of \( m \) and \( n \) such that this limit exists and equals 1. ### Step 1: Simplify the expression inside the limit We start with the expression inside the limit: \[ (8x^3 + mx^2)^{\frac{1}{3}} \] As \( x \) approaches infinity, the term \( 8x^3 \) will dominate \( mx^2 \). Therefore, we can factor out \( x^3 \): \[ (8x^3(1 + \frac{m}{8} \cdot \frac{1}{x})^{\frac{1}{3}}) = (8^{\frac{1}{3}} x) \left(1 + \frac{m}{8} \cdot \frac{1}{x}\right)^{\frac{1}{3}} \] ### Step 2: Evaluate the limit of the cube root Using the binomial expansion for small values of \( \frac{m}{8} \cdot \frac{1}{x} \) as \( x \to \infty \): \[ \left(1 + \frac{m}{8} \cdot \frac{1}{x}\right)^{\frac{1}{3}} \approx 1 + \frac{1}{3} \cdot \frac{m}{8} \cdot \frac{1}{x} \] Thus, we can rewrite our limit as: \[ \lim_{x \to \infty} \left( 2x \left(1 + \frac{1}{3} \cdot \frac{m}{8} \cdot \frac{1}{x}\right) - nx \right) \] ### Step 3: Combine the terms This simplifies to: \[ \lim_{x \to \infty} \left( 2x + \frac{m}{12} - nx \right) \] ### Step 4: Set the limit equal to 1 For the limit to exist and equal 1, the coefficient of \( x \) must equal zero: \[ 2 - n = 0 \implies n = 2 \] ### Step 5: Determine the value of \( m \) Now we substitute \( n = 2 \) back into the constant term: \[ \frac{m}{12} = 1 \implies m = 12 \] ### Step 6: Calculate \( \frac{m}{n} \) Now we can find the value of \( \frac{m}{n} \): \[ \frac{m}{n} = \frac{12}{2} = 6 \] ### Final Answer Thus, the value of \( \frac{m}{n} \) is: \[ \boxed{6} \]

To solve the problem, we need to evaluate the limit: \[ \lim_{x \to \infty} \left( (8x^3 + mx^2)^{\frac{1}{3}} - nx \right) \] and determine the values of \( m \) and \( n \) such that this limit exists and equals 1. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (2x)/(1+4x)

If x is nearly equal to 1 then find the value of (mx^m - nx^n)/(m- n)

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

If 0lt xlty , then lim_(xrarroo) (y^n+x^n)^(1//n) is equal to

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

The value of lim_(xrarroo) x^(1//x) equals

lim_(xrarroo) (x^(3)+3x^(2)+6x+5)/(x^(3)+x+2)

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

If lim_(xrarr-1)(sin(x^3+bx^2+cx +d))/((sqrt(2+x)-1){log_e(x+2)}^2) exists and is equal to l, then b+d+l is equal to

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |