Home
Class 12
MATHS
If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2...

If `f(x) = lim_(n->oo) sum_(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(1- tan^2 (x/2^(r+1)))` then `lim_(x->0) f(x)/x` is

A

1

B

0

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given function and compute the limit as required. ### Step 1: Define the function We start with the function: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{\tan\left(\frac{x}{2^{r+1}}\right) + \tan^3\left(\frac{x}{2^{r+1}}\right)}{1 - \tan^2\left(\frac{x}{2^{r+1}}\right)} \] ### Step 2: Simplify the expression inside the limit We can rewrite the expression using the identity for tangent: \[ \tan(a) + \tan^3(a) = \tan(a)(1 + \tan^2(a)) = \tan(a) \sec^2(a) \] Thus, we have: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \tan\left(\frac{x}{2^{r+1}}\right) \sec^2\left(\frac{x}{2^{r+1}}\right) \] ### Step 3: Substitute \(\alpha_r\) Let \(\alpha_r = \frac{x}{2^{r+1}}\). Then, as \(n \to \infty\), \(\alpha_r \to 0\) for each \(r\). Therefore, we can express \(f(x)\) as: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \tan(\alpha_r) \sec^2(\alpha_r) \] ### Step 4: Apply Taylor expansion for small angles For small angles, we have the approximations: \[ \tan(\alpha_r) \approx \alpha_r \quad \text{and} \quad \sec^2(\alpha_r) \approx 1 \] Thus: \[ f(x) \approx \lim_{n \to \infty} \sum_{r=0}^{n} \alpha_r = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{x}{2^{r+1}} = x \lim_{n \to \infty} \sum_{r=0}^{n} \frac{1}{2^{r+1}} \] ### Step 5: Evaluate the geometric series The sum \(\sum_{r=0}^{n} \frac{1}{2^{r+1}}\) is a geometric series with first term \(\frac{1}{2}\) and common ratio \(\frac{1}{2}\): \[ \sum_{r=0}^{\infty} \frac{1}{2^{r+1}} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1 \] Thus: \[ f(x) = x \cdot 1 = x \] ### Step 6: Find the limit Now we need to find: \[ \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{x}{x} = 1 \] ### Conclusion Therefore, the final answer is: \[ \lim_{x \to 0} \frac{f(x)}{x} = 1 \] ---

To solve the problem step by step, we will analyze the given function and compute the limit as required. ### Step 1: Define the function We start with the function: \[ f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{\tan\left(\frac{x}{2^{r+1}}\right) + \tan^3\left(\frac{x}{2^{r+1}}\right)}{1 - \tan^2\left(\frac{x}{2^{r+1}}\right)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

If f(x) = tan^(-1)((2^x)/(1 + 2^(2x + 1))) , then sum_(r = 0)^(9) f(r ) is

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

The value of the lim_(n->oo)tan{sum_(r=1)^ntan^(- 1)(1/(2r^2))} is equal to

If f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x)) then find lim_(ntooo) f(n).

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2^r)/(x-2) is equal to

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Section I - Solved Mcqs
  1. If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 t...

    Text Solution

    |

  2. If lim(xrarr1)((asin(x-1)+bcos(x-1)+4))/(x^2-1)=2, then (a,b) is equal...

    Text Solution

    |

  3. If a gt 0 and lim(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0, then (a,b) lies ...

    Text Solution

    |

  4. If alpha,beta are two distinct real roots of the equation a x ^3 + x-...

    Text Solution

    |

  5. Let f(x)=(loge(x^2+e^x))/(loge(x^4+e^2x)). If lim(xrarr oo) f(x)=l and...

    Text Solution

    |

  6. lim(nto oo) ((nsqrt(p)+nsqrt(q))/(2))^n,p,q,gt 0 equals

    Text Solution

    |

  7. The value of lim(xrarr0)(e^(x)-cos2x-x)/(x^2) , is

    Text Solution

    |

  8. lim(xrarr0) (2^(|x|)e^(|x|)-|x|log(2)2-1)/(xtanx) is equal to

    Text Solution

    |

  9. If("lim")(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e...

    Text Solution

    |

  10. The value of lim(x to oo)(2x^(1//2)+3x^(1//3)+4x^(1//4)+…………+nx^(1//n)...

    Text Solution

    |

  11. If A,B,C are positive real numbers such that lim(xrarr oo) (sqrt(Ax^2+...

    Text Solution

    |

  12. Let kgt0 and lambda =lim(xrarr0) (k(1-4sqrt(k^2-x^2)))/(x^2sqrt(k^2-x^...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)...

    Text Solution

    |

  14. If lim(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must b...

    Text Solution

    |

  15. If lim(xrarroo) (8x^3+mx^2)^(1//3)-nx exists and is equal to 1 , then ...

    Text Solution

    |

  16. If P(x) is a polynomial such that P(x)+P(2x)=5x^2-18, then lim(xrarr3)...

    Text Solution

    |

  17. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  18. Let f(x) is a polynomial function and f(alpha))^(2) + f'(alpha))^(2) =...

    Text Solution

    |

  19. If f:[-1,1]toR and f'(0)=lim(ntooo)nf(1/n) and f(0)=0. Find the value ...

    Text Solution

    |

  20. Let f(x)={((tan^(2){x})/(x^(2)-[x]^(2)),"for"xgt0),(1/(sqrt({x}cot{x})...

    Text Solution

    |