Home
Class 12
MATHS
If Sn=sum(k=1)^n ak and lim(n->oo)an=a ,...

If `S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a ,` then `lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k)` is equal to

A

0

B

a

C

`sqrt(2)a`

D

2a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit: \[ \lim_{n \to \infty} \frac{S_{n+1} - S_n}{\sqrt{\sum_{k=1}^n k}} \] where \( S_n = \sum_{k=1}^n a_k \) and \( \lim_{n \to \infty} a_n = a \). ### Step 1: Express \( S_{n+1} - S_n \) We know that: \[ S_{n+1} = S_n + a_{n+1} \] Thus, we can write: \[ S_{n+1} - S_n = a_{n+1} \] ### Step 2: Write the limit expression Substituting \( S_{n+1} - S_n \) into the limit, we have: \[ \lim_{n \to \infty} \frac{S_{n+1} - S_n}{\sqrt{\sum_{k=1}^n k}} = \lim_{n \to \infty} \frac{a_{n+1}}{\sqrt{\sum_{k=1}^n k}} \] ### Step 3: Evaluate \( \sum_{k=1}^n k \) The sum of the first \( n \) natural numbers is given by: \[ \sum_{k=1}^n k = \frac{n(n+1)}{2} \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} \frac{a_{n+1}}{\sqrt{\frac{n(n+1)}{2}}} \] ### Step 4: Simplify the denominator The square root of the sum becomes: \[ \sqrt{\frac{n(n+1)}{2}} = \sqrt{\frac{n^2 + n}{2}} = \sqrt{\frac{n^2(1 + \frac{1}{n})}{2}} = \frac{n}{\sqrt{2}} \sqrt{1 + \frac{1}{n}} \] As \( n \to \infty \), \( \sqrt{1 + \frac{1}{n}} \to 1 \). Therefore, we have: \[ \sqrt{\frac{n(n+1)}{2}} \sim \frac{n}{\sqrt{2}} \text{ as } n \to \infty \] ### Step 5: Substitute back into the limit Now substituting this back into our limit expression, we get: \[ \lim_{n \to \infty} \frac{a_{n+1}}{\frac{n}{\sqrt{2}}} = \lim_{n \to \infty} \frac{\sqrt{2} a_{n+1}}{n} \] ### Step 6: Evaluate the limit Since \( \lim_{n \to \infty} a_n = a \), we have \( \lim_{n \to \infty} a_{n+1} = a \). Thus, we can write: \[ \lim_{n \to \infty} \frac{\sqrt{2} a_{n+1}}{n} = \lim_{n \to \infty} \frac{\sqrt{2} a}{n} = 0 \] ### Conclusion Therefore, the final result is: \[ \lim_{n \to \infty} \frac{S_{n+1} - S_n}{\sqrt{\sum_{k=1}^n k}} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

lim_(n to oo)(n!)/((n+1)!-n!)

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

lim_(n->oo)[log_(n-1)(n)log_n(n+1)*log_(n+1)(n+2).....log_(n^k-1) (n^k)] is equal to :

The value of lim_(n->oo) n^(1/n)

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(n rarr oo)2^(1/n)

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. Let f(x)={(x^(2),x epsilonZ),((d(x^(2)-4))/(2-x),x !inZ):} the set of ...

    Text Solution

    |

  2. If Sn=sum(k=1)^n ak and lim(n->oo)an=a , then lim(n->oo)(S(n+1)-Sn)/sq...

    Text Solution

    |

  3. If a1=1a n da(n+1)=(4+3an)/(3+2an),ngeq1,a n dif("lim")(nvecoo)an=a , ...

    Text Solution

    |

  4. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then underset(ntooo)limx(n)...

    Text Solution

    |

  5. The value of underset(xrarr0)(lim)(sqrt(1-cosx^(2)))/(1-cos x) is

    Text Solution

    |

  6. Evaluate underset(ntooo)limncos((pi)/(4n))sin((pi)/(4n)).

    Text Solution

    |

  7. Evaluate ("lim")(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

    Text Solution

    |

  8. If f(x) is the integral of (2 sin x - sin 2x )/(x ^ 3 ) , w...

    Text Solution

    |

  9. Evaluate: ("lim")(xvec0)x^m(logx)^n ,m , n in Ndot

    Text Solution

    |

  10. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  11. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  12. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  13. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  14. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  15. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  16. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  17. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  18. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  19. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  20. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |