Home
Class 12
MATHS
Let < an > be a sequence such that lim(...

Let `< a_n >` be a sequence such that `lim_(x->oo)a_n=0.` Then `lim_(n->oo)(a_1+a_2++a_n)/(sqrt(sum_(k=1)^n k)),` is

A

a.0

B

b.1

C

`c. sqrt(2)`

D

d.2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{n \to \infty} \frac{a_1 + a_2 + \ldots + a_n}{\sqrt{\sum_{k=1}^n k}} \] Given that \(\lim_{n \to \infty} a_n = 0\). ### Step 1: Analyze the denominator The denominator is \(\sqrt{\sum_{k=1}^n k}\). We know that: \[ \sum_{k=1}^n k = \frac{n(n + 1)}{2} \] Thus, we can simplify the denominator: \[ \sqrt{\sum_{k=1}^n k} = \sqrt{\frac{n(n + 1)}{2}} = \sqrt{\frac{n^2 + n}{2}} = \sqrt{\frac{n^2(1 + \frac{1}{n})}{2}} = \frac{n\sqrt{1 + \frac{1}{n}}}{\sqrt{2}} \] As \(n\) approaches infinity, \(\sqrt{1 + \frac{1}{n}} \to 1\). Therefore, we have: \[ \sqrt{\sum_{k=1}^n k} \sim \frac{n}{\sqrt{2}} \quad \text{as } n \to \infty \] ### Step 2: Analyze the numerator Now, consider the numerator \(a_1 + a_2 + \ldots + a_n\). Since \(\lim_{n \to \infty} a_n = 0\), it implies that the terms \(a_n\) are getting smaller. However, we need to evaluate the sum \(S_n = a_1 + a_2 + \ldots + a_n\). Since \(a_n\) approaches 0, we can say that \(S_n\) grows slower than \(n\) as \(n\) increases. More formally, if \(a_n\) is bounded, then: \[ S_n \leq n \cdot M \quad \text{for some constant } M \] ### Step 3: Combine the results Now we can rewrite our limit: \[ \lim_{n \to \infty} \frac{S_n}{\sqrt{\sum_{k=1}^n k}} = \lim_{n \to \infty} \frac{S_n}{\frac{n}{\sqrt{2}}} = \sqrt{2} \lim_{n \to \infty} \frac{S_n}{n} \] Since \(S_n\) grows slower than \(n\) (as discussed), we can conclude that: \[ \lim_{n \to \infty} \frac{S_n}{n} = 0 \] ### Step 4: Final result Thus, we have: \[ \lim_{n \to \infty} \frac{S_n}{\sqrt{\sum_{k=1}^n k}} = \sqrt{2} \cdot 0 = 0 \] So, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of lim_(n->oo) n^(1/n)

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n rarr oo)2^(1/n)

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

For positive integers k=1,2,3,....n,, let S_k denotes the area of triangleAOB_k such that angleAOB_k=(kpi)/(2n) , OA=1 and OB_k=k The value of the lim_(n->oo)1/n^2sum_(k-1)^nS_k is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(xrarroo) (logx)/(x^n), n gt 0, is

    Text Solution

    |

  2. underset(xtoa)lim(log(x-a))/(log(e^(x)-e^(a)))

    Text Solution

    |

  3. Let < an > be a sequence such that lim(x->oo)an=0. Then lim(n->oo)(a1...

    Text Solution

    |

  4. If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of ("l...

    Text Solution

    |

  5. If f(9)=9,f^(prime)(9)=4,t h e n("lim")(nvecoo)(sqrt(f(x)-3))/(sqrt(x-...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. lim(x -> oo) x^n / e^x = 0, (n is an integer) for

    Text Solution

    |

  8. lim(xrarr0) (x)/(tan^-1x) is equal to

    Text Solution

    |

  9. If f(x) =x , x<0 and f(x)=1 , x = 0, and f(x)=x^2,x>0 then lim(x->0) ...

    Text Solution

    |

  10. Evaluate the following limits : Lim(x to oo) sqrt(((x+sin x)/(x- cos...

    Text Solution

    |

  11. Evaluate: ("lim")(xvecoo)(1+1/(a+b x))^(c+dx),w h e r ea , b , c ,a n ...

    Text Solution

    |

  12. If f'(2)=2, f''(2) =1, then lim(xrarr2)(2x^2-4f'(x))/(x-2), is

    Text Solution

    |

  13. lim(xrarr0) (e^(tanx)-e^x)/(tanx-x)=

    Text Solution

    |

  14. The value of lim(xrarr2^-) {x+(x-[x])^2}, is

    Text Solution

    |

  15. lim(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

    Text Solution

    |

  16. The value of lim(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

    Text Solution

    |

  17. The value of lim(x->a) (sinx/sina)^(1/(x-a))=

    Text Solution

    |

  18. Evaluate the following limit: (lim)(x->oo)((x^2+2x+3)/(2x^2+x+5))^((3x...

    Text Solution

    |

  19. Evaluate: ("lim")(xvecoo)((a1^( 1/x)+a2^ (1/x)+ --+a n^(1/x))/n)^(n x)

    Text Solution

    |

  20. The value of lim(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)), is

    Text Solution

    |