Home
Class 12
MATHS
The value of lim(x->oo)(pi/2-tan^(- 1)x)...

The value of `lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2),` is

A

0

B

1

C

-1

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{\pi}{2} - \tan^{-1} x \right)^{\frac{1}{x^2}} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to \infty \), \( \tan^{-1} x \) approaches \( \frac{\pi}{2} \). Therefore, \( \frac{\pi}{2} - \tan^{-1} x \) approaches \( 0 \). Thus, we have the limit in the form \( 0^{0} \). **Hint:** Recognizing the form of the limit helps determine the appropriate method to solve it. ### Step 2: Take the natural logarithm Let \( L = \lim_{x \to \infty} \left( \frac{\pi}{2} - \tan^{-1} x \right)^{\frac{1}{x^2}} \). Taking the natural logarithm, we have: \[ \log L = \lim_{x \to \infty} \frac{1}{x^2} \log \left( \frac{\pi}{2} - \tan^{-1} x \right) \] **Hint:** Taking the logarithm simplifies the exponentiation and allows us to work with the limit more easily. ### Step 3: Analyze the limit We know that as \( x \to \infty \), \( \tan^{-1} x \to \frac{\pi}{2} \), thus \( \frac{\pi}{2} - \tan^{-1} x \to 0 \). Therefore, we need to analyze the behavior of \( \log \left( \frac{\pi}{2} - \tan^{-1} x \right) \). Using the property of limits, we can express \( \frac{\pi}{2} - \tan^{-1} x \) as: \[ \frac{\pi}{2} - \tan^{-1} x = \frac{1}{x} + o\left(\frac{1}{x}\right) \text{ as } x \to \infty \] Thus, \[ \log \left( \frac{\pi}{2} - \tan^{-1} x \right) \sim \log \left( \frac{1}{x} \right) = -\log x \] **Hint:** Understanding the asymptotic behavior of functions as they approach limits can help simplify the limit. ### Step 4: Substitute back into the limit Now substituting back, we have: \[ \log L = \lim_{x \to \infty} \frac{-\log x}{x^2} \] This limit is of the form \( \frac{-\infty}{\infty} \), so we can apply L'Hôpital's Rule. **Hint:** L'Hôpital's Rule is useful for resolving indeterminate forms. ### Step 5: Apply L'Hôpital's Rule Differentiating the numerator and denominator: \[ \frac{d}{dx}(-\log x) = -\frac{1}{x}, \quad \frac{d}{dx}(x^2) = 2x \] Thus, applying L'Hôpital's Rule gives: \[ \log L = \lim_{x \to \infty} \frac{-\frac{1}{x}}{2x} = \lim_{x \to \infty} \frac{-1}{2x^2} = 0 \] **Hint:** Differentiating can often simplify complex limits. ### Step 6: Conclude the limit Since \( \log L = 0 \), we have: \[ L = e^0 = 1 \] Thus, the value of the limit is: \[ \lim_{x \to \infty} \left( \frac{\pi}{2} - \tan^{-1} x \right)^{\frac{1}{x^2}} = 1 \] **Final Answer:** \( \boxed{1} \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x->oo)(int_0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

The value of lim_(xrarr0){tan((pi)/(4)+x)}^(1//x) , is

Find the value of lim_(x->oo)(2-1/x+4/x^2)

find the value of lim_(x to oo) 48x (pi/4 - tan^(-1) ((x+1)/(x+2)))

The value of lim_(x->1)(2-x)^(tan((pix)/2)) is e^(-2/pi) (b) e^(1/pi) (c) e^(2/pi) (d) e^(-1/pi)

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(xrarr2^-) {x+(x-[x])^2}, is

    Text Solution

    |

  2. lim(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

    Text Solution

    |

  3. The value of lim(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

    Text Solution

    |

  4. The value of lim(x->a) (sinx/sina)^(1/(x-a))=

    Text Solution

    |

  5. Evaluate the following limit: (lim)(x->oo)((x^2+2x+3)/(2x^2+x+5))^((3x...

    Text Solution

    |

  6. Evaluate: ("lim")(xvecoo)((a1^( 1/x)+a2^ (1/x)+ --+a n^(1/x))/n)^(n x)

    Text Solution

    |

  7. The value of lim(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)), is

    Text Solution

    |

  8. lim(x->1)[(x^3+2x^2+x+1)/(x^2+2x+3)]^((1-cos(x-1))/(x-1)^2)

    Text Solution

    |

  9. The value of lim(xrarr0) (sinx)/(xqrt(x^2)), is

    Text Solution

    |

  10. Let f:R to R be a differentiable function such that f(2)=2. Then, the ...

    Text Solution

    |

  11. Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim(x->0...

    Text Solution

    |

  12. Let f : R to R be a differentiable function and f(1) = 4. Then, the va...

    Text Solution

    |

  13. Find the values of aa n db in order that ("lim")(xvec0)(x(1+acosx)-bsi...

    Text Solution

    |

  14. If lim(x->a)(f(x)/(g(x))) exists, then

    Text Solution

    |

  15. Let f (2) = 4 f(2) = 4 Then Lt(x to 2) (x f(2) -2 f(x))/(x -2) is

    Text Solution

    |

  16. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  17. lim(xrarr oo) (int(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

    Text Solution

    |

  18. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  19. Let alpha, beta (a lt b) be the roots of the equation ax^(2)+bx+c=0. I...

    Text Solution

    |

  20. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |