Home
Class 12
MATHS
Let f''(x) be continuous at x = 0 and f"...

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of `lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)`

A

11

B

2

C

12

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the expression given: \[ \lim_{x \to 0} \frac{2f(x) - 3f(2x) + f(4x)}{x^2} \] ### Step 1: Check the form of the limit First, we substitute \( x = 0 \) into the expression: \[ 2f(0) - 3f(0) + f(0) = 0 \] This results in \( \frac{0}{0} \) form, which is indeterminate. Therefore, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - The numerator: \[ \frac{d}{dx}(2f(x) - 3f(2x) + f(4x)) = 2f'(x) - 3 \cdot 2f'(2x) + 4f'(4x) = 2f'(x) - 6f'(2x) + 4f'(4x) \] - The denominator: \[ \frac{d}{dx}(x^2) = 2x \] Now we have: \[ \lim_{x \to 0} \frac{2f'(x) - 6f'(2x) + 4f'(4x)}{2x} \] ### Step 3: Substitute \( x = 0 \) again Substituting \( x = 0 \) again gives us: \[ 2f'(0) - 6f'(0) + 4f'(0) = 0 \] This is again a \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again. ### Step 4: Differentiate again Differentiate the numerator and the denominator again: - The numerator: \[ \frac{d}{dx}(2f'(x) - 6f'(2x) + 4f'(4x)) = 2f''(x) - 6 \cdot 2f''(2x) + 4 \cdot 4f''(4x) = 2f''(x) - 12f''(2x) + 16f''(4x) \] - The denominator: \[ \frac{d}{dx}(2x) = 2 \] Now we have: \[ \lim_{x \to 0} \frac{2f''(x) - 12f''(2x) + 16f''(4x)}{2} \] ### Step 5: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ 2f''(0) - 12f''(0) + 16f''(0) = 2f''(0) - 12f''(0) + 16f''(0) = 6f''(0) \] Given that \( f''(0) = 4 \): \[ 6f''(0) = 6 \cdot 4 = 24 \] ### Step 6: Final limit value Now, divide by 2: \[ \frac{24}{2} = 12 \] Thus, the value of the limit is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Let f''(x) be continuous at x=0 If lim_(xto0) (2f(x)-3af(2x)+bf(8x))/(sin^(2)x) exists and f(0)ne0,f'(0)ne0 , then the value of 3a//b is________.

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f^(x) be continuous at x=0 If ("lim")_(xvec0)(2f(x)-3a(f(2x)+bf(8x))/(sin^2x) exists and f(0)!=0,f^(prime)(0)!=0, then the value of (3a)/b is____

Let f(x) is a polynomial satisfying f(x).f(y) = f(x) +f(y) + f(xy) - 2 for all x, y and f(2) = 1025, then the value of lim_(x->2) f'(x) is

Let f(2)=4 and f'(2)=4 . Then lim_(x->2)(xf(2)-2f(x))/(x-2) is equal to

If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 then the value of lim_(xrarr0) (x^(2))/({f(x^(2))-5f(4x^(2))+4f(7x^(2))}) is

If f(x) is continuous in [0,2] and f(0)=f(2). Then the equation f(x)=f(x+1) has

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously differentiable function with f'(x)ne0 and satisfies f(0) = 1 and f'(0) = 2 then lim_(xrarr0) (f(x)-1)/(x) is

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. The value of lim(xrarr0) (sinx)/(xqrt(x^2)), is

    Text Solution

    |

  2. Let f:R to R be a differentiable function such that f(2)=2. Then, the ...

    Text Solution

    |

  3. Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim(x->0...

    Text Solution

    |

  4. Let f : R to R be a differentiable function and f(1) = 4. Then, the va...

    Text Solution

    |

  5. Find the values of aa n db in order that ("lim")(xvec0)(x(1+acosx)-bsi...

    Text Solution

    |

  6. If lim(x->a)(f(x)/(g(x))) exists, then

    Text Solution

    |

  7. Let f (2) = 4 f(2) = 4 Then Lt(x to 2) (x f(2) -2 f(x))/(x -2) is

    Text Solution

    |

  8. lim(x->0) 1/x [inty ^a)e^(sin^2t) dt-int(x+y) ^a)e^(sin^2t)dt] is equ...

    Text Solution

    |

  9. lim(xrarr oo) (int(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

    Text Solution

    |

  10. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  11. Let alpha, beta (a lt b) be the roots of the equation ax^(2)+bx+c=0. I...

    Text Solution

    |

  12. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  13. ("lim")(xvec0)((1^x+2x+3^x++n^x)/n)^(1//x)i se q u a lto (n !)^n (b)...

    Text Solution

    |

  14. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  15. If lim(xrarroo) {ax-(x^2+1)/(x+1)}=b , a finite number, then

    Text Solution

    |

  16. If f(1) =g(1)=2, then lim(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-...

    Text Solution

    |

  17. Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluat...

    Text Solution

    |

  18. Evaluate : ("lim")(xvecpi/4)(1-cot^3x)/(2-cotx-cot^3x)

    Text Solution

    |

  19. lim(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)...

    Text Solution

    |

  20. The value of lim(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

    Text Solution

    |