Home
Class 12
MATHS
Given that lim(nto oo) sum(r=1)^(n) (l...

Given that
`lim_(nto oo) sum_(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1)/(2))`,
` lim_(n to oo) [(1)/(n^k)[(n+1)^k(n+2)^k.....(n+n)^k]]^(1//n)`, is

A

`(4k)/(e)`

B

`ksqrt((4)/(e)`

C

`((4)/(e))^k`

D

`((e)/(4))^k`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem step by step, we will analyze the expression and apply relevant mathematical principles. ### Step 1: Understanding the Limit Expression We need to evaluate the limit: \[ L = \lim_{n \to \infty} \left[ \frac{1}{n^k} \prod_{r=1}^{n} (n+r)^k \right]^{\frac{1}{n}} \] This can be rewritten as: \[ L = \lim_{n \to \infty} \left[ \frac{(n+1)^k (n+2)^k \cdots (n+n)^k}{n^k} \right]^{\frac{1}{n}} \] ### Step 2: Simplifying the Product We can factor out \(n^k\) from each term in the product: \[ = \lim_{n \to \infty} \left[ \frac{(n(1+\frac{1}{n}))^k (n(1+\frac{2}{n}))^k \cdots (n(1+\frac{n}{n}))^k}{n^k} \right]^{\frac{1}{n}} \] This simplifies to: \[ = \lim_{n \to \infty} \left[ n^{nk} \cdot (1+\frac{1}{n})^k (1+\frac{2}{n})^k \cdots (1+\frac{n}{n})^k \cdot \frac{1}{n^k} \right]^{\frac{1}{n}} \] \[ = \lim_{n \to \infty} \left[ n^{nk - k} \cdot (1+\frac{1}{n})^k (1+\frac{2}{n})^k \cdots (1+\frac{n}{n})^k \right]^{\frac{1}{n}} \] \[ = \lim_{n \to \infty} n^{k(n-1)/n} \cdot \left[(1+\frac{1}{n})^k (1+\frac{2}{n})^k \cdots (1+\frac{n}{n})^k \right]^{\frac{1}{n}} \] ### Step 3: Evaluating the Limit of the Product Now we need to evaluate: \[ \lim_{n \to \infty} \left[(1+\frac{1}{n})^k (1+\frac{2}{n})^k \cdots (1+\frac{n}{n})^k \right]^{\frac{1}{n}} \] This can be expressed as: \[ = \lim_{n \to \infty} \exp\left( \frac{1}{n} \sum_{r=1}^{n} k \log(1+\frac{r}{n}) \right) \] Using the property of logarithms, we can rewrite this as: \[ = \lim_{n \to \infty} \exp\left( k \cdot \frac{1}{n} \sum_{r=1}^{n} \log(1+\frac{r}{n}) \right) \] ### Step 4: Recognizing the Riemann Sum As \(n \to \infty\), the sum can be recognized as a Riemann sum for the integral: \[ \int_0^1 \log(1+x) \, dx \] Calculating this integral: \[ \int_0^1 \log(1+x) \, dx = [ (1+x) \log(1+x) - (1+x) ]_0^1 = [2 \log 2 - 2] - [0] = 2 \log 2 - 2 \] ### Step 5: Putting it All Together Thus, we have: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \log(1+\frac{r}{n}) = 2 \log 2 - 1 \] Therefore, we can conclude: \[ L = \exp\left(k(2 \log 2 - 1)\right) = \exp\left(2k \log 2 - k\right) = \frac{4^k}{e^k} \] Thus, the final answer is: \[ L = \left(\frac{4}{e}\right)^k \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

Given that lim_(n to oo)sum_(r=1)^(n)(log(n^(2)+r^(2))-2logn)/(n)=log2+(pi)/(2)-2 , then lim_(n to oo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+r^(2))^(m)......(n^(2))^(m)]^(1//n) is equal to

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

lim_(n->oo) nsin(1/n)

lim_(n to oo)(n!)/((n+1)!-n!)

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xrarr oo) (int(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

    Text Solution

    |

  2. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  3. Let alpha, beta (a lt b) be the roots of the equation ax^(2)+bx+c=0. I...

    Text Solution

    |

  4. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  5. ("lim")(xvec0)((1^x+2x+3^x++n^x)/n)^(1//x)i se q u a lto (n !)^n (b)...

    Text Solution

    |

  6. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  7. If lim(xrarroo) {ax-(x^2+1)/(x+1)}=b , a finite number, then

    Text Solution

    |

  8. If f(1) =g(1)=2, then lim(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-...

    Text Solution

    |

  9. Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluat...

    Text Solution

    |

  10. Evaluate : ("lim")(xvecpi/4)(1-cot^3x)/(2-cotx-cot^3x)

    Text Solution

    |

  11. lim(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)...

    Text Solution

    |

  12. The value of lim(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

    Text Solution

    |

  13. lim(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

    Text Solution

    |

  14. The value of lim(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x), is

    Text Solution

    |

  15. Evaluate: ("lim")(h->0)((a+h)^2sin(a+h)-a^2sina)/h

    Text Solution

    |

  16. lim(h -> 0) (sin(a+3h)-3sin(a+2h)+3sin(a+h)-sina)/h^3 =

    Text Solution

    |

  17. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  18. If lim(xrarr0) (log (3+x)-log (3-x))/(x)=k, the value of k is

    Text Solution

    |

  19. If f(x)={sinx ,x!=npi,n in I2,ot h e r w i s e g(x)={x^2+1,x!=0,4,x=...

    Text Solution

    |

  20. If lim(xrarr0) (x(1+acos x)-bsin x)/(x)=1, then a-b, are

    Text Solution

    |