Home
Class 12
MATHS
lim(xto0) (1)/(x^12){1-cos (x^2/2)-cos (...

`lim_(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)} ` is equal to

A

`(1)/(32)`

B

`(1)/(256)`

C

` (1)/(16)`

D

`-(1)/(256)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to 0} \frac{1}{x^{12}} \left( 1 - \cos\left(\frac{x^2}{2}\right) - \cos\left(\frac{x^4}{4}\right) + \cos\left(\frac{x^2}{2}\right) \cos\left(\frac{x^4}{4}\right) \right), \] we will follow these steps: ### Step 1: Rewrite the expression We start by rewriting the expression inside the limit: \[ L = \lim_{x \to 0} \frac{1}{x^{12}} \left( 1 - \cos\left(\frac{x^2}{2}\right) - \cos\left(\frac{x^4}{4}\right) + \cos\left(\frac{x^2}{2}\right) \cos\left(\frac{x^4}{4}\right) \right). \] ### Step 2: Use trigonometric identities Using the identity \(1 - \cos A = 2 \sin^2\left(\frac{A}{2}\right)\), we can express the cosines: \[ 1 - \cos\left(\frac{x^2}{2}\right) = 2 \sin^2\left(\frac{x^2}{4}\right), \] \[ 1 - \cos\left(\frac{x^4}{4}\right) = 2 \sin^2\left(\frac{x^4}{8}\right). \] Substituting these into our limit gives: \[ L = \lim_{x \to 0} \frac{1}{x^{12}} \left( 2 \sin^2\left(\frac{x^2}{4}\right) - 2 \sin^2\left(\frac{x^4}{8}\right) + \cos\left(\frac{x^2}{2}\right) \cos\left(\frac{x^4}{4}\right) \right). \] ### Step 3: Simplify the expression Now we can factor out the common terms: \[ L = 2 \lim_{x \to 0} \frac{1}{x^{12}} \left( \sin^2\left(\frac{x^2}{4}\right) - \sin^2\left(\frac{x^4}{8}\right) + \cos\left(\frac{x^2}{2}\right) \cos\left(\frac{x^4}{4}\right) \right). \] ### Step 4: Analyze the limit As \(x \to 0\), both \(\sin\left(\frac{x^2}{4}\right)\) and \(\sin\left(\frac{x^4}{8}\right)\) approach 0. We can use the small angle approximation \(\sin z \approx z\) for small \(z\): \[ \sin\left(\frac{x^2}{4}\right) \approx \frac{x^2}{4}, \quad \sin\left(\frac{x^4}{8}\right) \approx \frac{x^4}{8}. \] Thus, we have: \[ \sin^2\left(\frac{x^2}{4}\right) \approx \left(\frac{x^2}{4}\right)^2 = \frac{x^4}{16}, \quad \sin^2\left(\frac{x^4}{8}\right) \approx \left(\frac{x^4}{8}\right)^2 = \frac{x^8}{64}. \] ### Step 5: Substitute back into the limit Substituting these approximations back into our limit gives: \[ L = 2 \lim_{x \to 0} \frac{1}{x^{12}} \left( \frac{x^4}{16} - \frac{x^8}{64} + 1 \right). \] ### Step 6: Evaluate the limit Now we can simplify: \[ L = 2 \lim_{x \to 0} \left( \frac{x^4}{16x^{12}} - \frac{x^8}{64x^{12}} + \frac{1}{x^{12}} \right) = 2 \lim_{x \to 0} \left( \frac{1}{16x^8} - \frac{1}{64x^4} + \frac{1}{x^{12}} \right). \] As \(x \to 0\), the dominant term is \(\frac{1}{x^{12}}\), leading to: \[ L \to 2 \cdot \infty = \infty. \] ### Final Result Thus, the limit diverges, and we conclude that: \[ \lim_{x \to 0} \frac{1}{x^{12}} \left( 1 - \cos\left(\frac{x^2}{2}\right) - \cos\left(\frac{x^4}{4}\right) + \cos\left(\frac{x^2}{2}\right) \cos\left(\frac{x^4}{4}\right) \right) = 0. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.

Evaluate: ("lim")_(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(xto(pi)) (1-sin(x/2))/(cos(x/2)(cos(x/4)-sin(x/4)))

Evaluate lim_(xto0) (1-cos2x)/x^(2)

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

lim_(x->0) (e^x +e^-x +2 cos x -4)/x^4 is equal to

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xrarr oo) (int(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

    Text Solution

    |

  2. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  3. Let alpha, beta (a lt b) be the roots of the equation ax^(2)+bx+c=0. I...

    Text Solution

    |

  4. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  5. ("lim")(xvec0)((1^x+2x+3^x++n^x)/n)^(1//x)i se q u a lto (n !)^n (b)...

    Text Solution

    |

  6. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  7. If lim(xrarroo) {ax-(x^2+1)/(x+1)}=b , a finite number, then

    Text Solution

    |

  8. If f(1) =g(1)=2, then lim(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-...

    Text Solution

    |

  9. Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluat...

    Text Solution

    |

  10. Evaluate : ("lim")(xvecpi/4)(1-cot^3x)/(2-cotx-cot^3x)

    Text Solution

    |

  11. lim(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)...

    Text Solution

    |

  12. The value of lim(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

    Text Solution

    |

  13. lim(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

    Text Solution

    |

  14. The value of lim(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x), is

    Text Solution

    |

  15. Evaluate: ("lim")(h->0)((a+h)^2sin(a+h)-a^2sina)/h

    Text Solution

    |

  16. lim(h -> 0) (sin(a+3h)-3sin(a+2h)+3sin(a+h)-sina)/h^3 =

    Text Solution

    |

  17. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  18. If lim(xrarr0) (log (3+x)-log (3-x))/(x)=k, the value of k is

    Text Solution

    |

  19. If f(x)={sinx ,x!=npi,n in I2,ot h e r w i s e g(x)={x^2+1,x!=0,4,x=...

    Text Solution

    |

  20. If lim(xrarr0) (x(1+acos x)-bsin x)/(x)=1, then a-b, are

    Text Solution

    |