Home
Class 12
MATHS
lim(h -> 0) (sin(a+3h)-3sin(a+2h)+3sin(a...

`lim_(h -> 0) (sin(a+3h)-3sin(a+2h)+3sin(a+h)-sina)/h^3 =`

A

`sin a `

B

`-sina`

C

`cos a `

D

`-cos a `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{h \to 0} \frac{\sin(a + 3h) - 3\sin(a + 2h) + 3\sin(a + h) - \sin(a)}{h^3}, \] we will follow these steps: ### Step 1: Substitute \( h = 0 \) First, we substitute \( h = 0 \) into the expression: \[ \sin(a + 3 \cdot 0) - 3\sin(a + 2 \cdot 0) + 3\sin(a + 0) - \sin(a) = \sin(a) - 3\sin(a) + 3\sin(a) - \sin(a) = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). **Hint:** If substituting directly gives \( \frac{0}{0} \), consider applying L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we apply L'Hôpital's Rule. We differentiate the numerator and the denominator separately. **Numerator:** - The derivative of \( \sin(a + 3h) \) is \( 3\cos(a + 3h) \). - The derivative of \( -3\sin(a + 2h) \) is \( -6\cos(a + 2h) \). - The derivative of \( 3\sin(a + h) \) is \( 3\cos(a + h) \). - The derivative of \( -\sin(a) \) is \( 0 \). Thus, the derivative of the numerator becomes: \[ 3\cos(a + 3h) - 6\cos(a + 2h) + 3\cos(a + h). \] **Denominator:** The derivative of \( h^3 \) is \( 3h^2 \). Now we rewrite the limit: \[ \lim_{h \to 0} \frac{3\cos(a + 3h) - 6\cos(a + 2h) + 3\cos(a + h)}{3h^2}. \] **Hint:** After applying L'Hôpital's Rule, check if you still have an indeterminate form. ### Step 3: Substitute \( h = 0 \) Again Substituting \( h = 0 \) again gives: \[ 3\cos(a + 0) - 6\cos(a + 0) + 3\cos(a + 0) = 3\cos(a) - 6\cos(a) + 3\cos(a) = 0. \] We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. **Hint:** If you still get \( \frac{0}{0} \), you need to differentiate again. ### Step 4: Apply L'Hôpital's Rule Again Differentiate the numerator and denominator again. **Numerator:** - The derivative of \( 3\cos(a + 3h) \) is \( -9\sin(a + 3h) \). - The derivative of \( -6\cos(a + 2h) \) is \( 12\sin(a + 2h) \). - The derivative of \( 3\cos(a + h) \) is \( -3\sin(a + h) \). So the new numerator is: \[ -9\sin(a + 3h) + 12\sin(a + 2h) - 3\sin(a + h). \] **Denominator:** The derivative of \( 3h^2 \) is \( 6h \). Now we rewrite the limit: \[ \lim_{h \to 0} \frac{-9\sin(a + 3h) + 12\sin(a + 2h) - 3\sin(a + h)}{6h}. \] **Hint:** Substitute \( h = 0 \) again to check if you still have an indeterminate form. ### Step 5: Substitute \( h = 0 \) Again Substituting \( h = 0 \) gives: \[ -9\sin(a) + 12\sin(a) - 3\sin(a) = 0. \] We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule once more. ### Step 6: Apply L'Hôpital's Rule One Last Time Differentiate the numerator and denominator once more. **Numerator:** - The derivative of \( -9\sin(a + 3h) \) is \( -27\cos(a + 3h) \). - The derivative of \( 12\sin(a + 2h) \) is \( 24\cos(a + 2h) \). - The derivative of \( -3\sin(a + h) \) is \( -3\cos(a + h) \). So the new numerator is: \[ -27\cos(a + 3h) + 24\cos(a + 2h) - 3\cos(a + h). \] **Denominator:** The derivative of \( 6h \) is \( 6 \). Now we rewrite the limit: \[ \lim_{h \to 0} \frac{-27\cos(a + 3h) + 24\cos(a + 2h) - 3\cos(a + h)}{6}. \] ### Step 7: Substitute \( h = 0 \) One Last Time Substituting \( h = 0 \) gives: \[ -27\cos(a) + 24\cos(a) - 3\cos(a) = -6\cos(a). \] So the limit evaluates to: \[ \frac{-6\cos(a)}{6} = -\cos(a). \] ### Final Answer Thus, the limit is: \[ \lim_{h \to 0} \frac{\sin(a + 3h) - 3\sin(a + 2h) + 3\sin(a + h) - \sin(a)}{h^3} = -\cos(a). \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|96 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • MATHEMATICAL INDUCTION

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos

Similar Questions

Explore conceptually related problems

7. lim_(h rarr0)((a+h)^(2)sin(a+h)-a^(2)sin a)/(h)

lim _(h -> 0) (sqrt(x+h) - sqrtx)/h

Evaluate: ("lim")_(h->0)((a+h)^2sin(a+h)-a^2sina)/h

Evaluate underset (h to 0) lim ((a+h)^(2) sin (a+h) -a^(2) sin a)/h .

Evaluate (lim)_(hvec0)((a+h)^2sin^(-1)(a+h)-a^2sin^(-1)a)/h

6. lim_(h rarr0)(log(e^(3)+h)-3)/(h)

lim_(hrarr0) ((e+h)^(In(e+h))-e)/(h) is-

Evaluate the following limits : Lim_(h to 0) (sin (x+h) -sin x)/h

Evaluate lim_(hto0) (2[sqrt(3)sin((pi)/(6)+h)-cos((pi)/(6)+h)])/(sqrt(3)h(sqrt(3)cosh-sinh)).

If tan^-1 (x+h)=tan^-1 (x)+(h sin y)(sin y)-(h sin y)^2. (sin^2y)/2+ (h sin y)^3. (sin^3y)/3+…, where xepsilon (0,1), yepsilon (pi/4, pi/2) then (A) y=tan^-1x (B) y=sin^-1x (C) y=cot^-1x (D) y=cos^-1x

OBJECTIVE RD SHARMA ENGLISH-LIMITS-Chapter Test
  1. lim(xrarr oo) (int(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

    Text Solution

    |

  2. Evaluate underset(xto0)lim(3x+|x|)/(7x-5|x|).

    Text Solution

    |

  3. Let alpha, beta (a lt b) be the roots of the equation ax^(2)+bx+c=0. I...

    Text Solution

    |

  4. Given that lim(nto oo) sum(r=1)^(n) (log (r+n)-log n)/(n)=2(log 2-(1...

    Text Solution

    |

  5. ("lim")(xvec0)((1^x+2x+3^x++n^x)/n)^(1//x)i se q u a lto (n !)^n (b)...

    Text Solution

    |

  6. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  7. If lim(xrarroo) {ax-(x^2+1)/(x+1)}=b , a finite number, then

    Text Solution

    |

  8. If f(1) =g(1)=2, then lim(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-...

    Text Solution

    |

  9. Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluat...

    Text Solution

    |

  10. Evaluate : ("lim")(xvecpi/4)(1-cot^3x)/(2-cotx-cot^3x)

    Text Solution

    |

  11. lim(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)...

    Text Solution

    |

  12. The value of lim(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

    Text Solution

    |

  13. lim(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

    Text Solution

    |

  14. The value of lim(xrarr0) (3sqrt(1+sinx )-3sqrt(1-sinx))/(x), is

    Text Solution

    |

  15. Evaluate: ("lim")(h->0)((a+h)^2sin(a+h)-a^2sina)/h

    Text Solution

    |

  16. lim(h -> 0) (sin(a+3h)-3sin(a+2h)+3sin(a+h)-sina)/h^3 =

    Text Solution

    |

  17. Let a=min{x^(2)+2x+3,x epsilonR} and b=lim(x theta to 0)(1-cos theta)/...

    Text Solution

    |

  18. If lim(xrarr0) (log (3+x)-log (3-x))/(x)=k, the value of k is

    Text Solution

    |

  19. If f(x)={sinx ,x!=npi,n in I2,ot h e r w i s e g(x)={x^2+1,x!=0,4,x=...

    Text Solution

    |

  20. If lim(xrarr0) (x(1+acos x)-bsin x)/(x)=1, then a-b, are

    Text Solution

    |