Home
Class 12
MATHS
int(1)/(sqrt(x^(2)+2))d(x^(2)+1) is equ...

`int(1)/(sqrt(x^(2)+2))d(x^(2)+1)` is equal to

A

`2sqrt(x^(2)+2)+C`

B

`2((x^(2)+2)^(5/2))+C`

C

`(1)/((x^(2)+2)^(3//2))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sqrt{x^2 + 2}} \, d(x^2 + 1) \), we will follow these steps: ### Step 1: Rewrite the integral We start by recognizing that \( d(x^2 + 1) = 2x \, dx \). Thus, we can rewrite the integral as: \[ \int \frac{1}{\sqrt{x^2 + 2}} \cdot 2x \, dx \] ### Step 2: Use substitution Let \( t = x^2 + 2 \). Then, we differentiate \( t \) to find \( dt \): \[ dt = 2x \, dx \quad \Rightarrow \quad 2x \, dx = dt \] Now we can substitute \( t \) into the integral: \[ \int \frac{1}{\sqrt{t}} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{\sqrt{t}} \, dt \) can be solved using the power rule for integration: \[ \int t^{-1/2} \, dt = \frac{t^{1/2}}{1/2} + C = 2\sqrt{t} + C \] ### Step 4: Substitute back Now we substitute back \( t = x^2 + 2 \): \[ 2\sqrt{t} + C = 2\sqrt{x^2 + 2} + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{1}{\sqrt{x^2 + 2}} \, d(x^2 + 1) = 2\sqrt{x^2 + 2} + C \] ---

To solve the integral \( \int \frac{1}{\sqrt{x^2 + 2}} \, d(x^2 + 1) \), we will follow these steps: ### Step 1: Rewrite the integral We start by recognizing that \( d(x^2 + 1) = 2x \, dx \). Thus, we can rewrite the integral as: \[ \int \frac{1}{\sqrt{x^2 + 2}} \cdot 2x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(2x-1)/(sqrt(x^(2)-x-1))dx

int_(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

int(dx)/((1+sqrt(x))sqrt((x-x^2))) is equal to (a) (1+sqrt(x))/((1-x)^2)+c (b) (1+sqrt(x))/((1+x)^2)+c (c) (1-sqrt(x))/((1-x)^2)+c (d) (2(sqrt(x)-1))/(sqrt((1-x)))+c

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to