Home
Class 12
MATHS
Integration of f (x) = sqrt(1+x^(2)) wit...

Integration of f (x) `= sqrt(1+x^(2))` with respect to `x^(2)`, is

A

`(2)/(3)((1+x^(2))^(3//2))/(x)+C`

B

`(2)/(3)(1+x^(2))^(3//2)+C`

C

`(2x)/(3)(1+x^(2))^(3//2)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral of \( f(x) = \sqrt{1 + x^2} \) with respect to \( x^2 \), we will follow these steps: ### Step 1: Rewrite the Integral We want to find: \[ \int \sqrt{1 + x^2} \, d(x^2) \] Since \( d(x^2) = 2x \, dx \), we can rewrite the integral as: \[ \int \sqrt{1 + x^2} \cdot 2x \, dx \] ### Step 2: Simplify the Integral Now we can factor out the constant: \[ 2 \int x \sqrt{1 + x^2} \, dx \] ### Step 3: Use Substitution Let’s use the substitution: \[ t = 1 + x^2 \implies dt = 2x \, dx \] This means: \[ x \, dx = \frac{dt}{2} \] Substituting in the integral, we have: \[ 2 \int x \sqrt{1 + x^2} \, dx = 2 \int x \sqrt{t} \cdot \frac{dt}{2} = \int \sqrt{t} \, dt \] ### Step 4: Integrate Now we can integrate: \[ \int \sqrt{t} \, dt = \int t^{1/2} \, dt = \frac{t^{3/2}}{3/2} + C = \frac{2}{3} t^{3/2} + C \] ### Step 5: Substitute Back Substituting back \( t = 1 + x^2 \): \[ \frac{2}{3} (1 + x^2)^{3/2} + C \] ### Final Answer Thus, the integral of \( f(x) = \sqrt{1 + x^2} \) with respect to \( x^2 \) is: \[ \frac{2}{3} (1 + x^2)^{3/2} + C \]

To solve the integral of \( f(x) = \sqrt{1 + x^2} \) with respect to \( x^2 \), we will follow these steps: ### Step 1: Rewrite the Integral We want to find: \[ \int \sqrt{1 + x^2} \, d(x^2) \] Since \( d(x^2) = 2x \, dx \), we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Integration of (1)/(sqrt(x^(2)+9)) with respect to (x^(2)+1) is equal to

Integrate the functions sqrt(1-4x^2)

Integrate with respect to x: i) sin^(2)x ,

Integrate the functions 1/(sqrt(1+4x^2))

Integrate the functions 1/(sqrt(1+4x^2))

Integrate the functions sqrt(1+(x^2)/9)

Integrate the functions sqrt(1+(x^2)/9)

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

Integrate the functions 1/(x-sqrt(x))

Integrate the functions (x+2)/(sqrt(x^2-1))