Home
Class 12
MATHS
If int(sqrt(cotx))/(sinxcosx)dx=Psqrt(co...

If `int(sqrt(cotx))/(sinxcosx)dx=Psqrt(cotx)+Q` , then P equals

A

1

B

2

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx \) and find the value of \( P \) in the expression \( I = P \sqrt{\cot x} + Q \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx \] We can rewrite \( \cot x \) as \( \frac{\cos x}{\sin x} \), so: \[ \sqrt{\cot x} = \sqrt{\frac{\cos x}{\sin x}} = \frac{\sqrt{\cos x}}{\sqrt{\sin x}} \] Thus, we can express the integral as: \[ I = \int \frac{\sqrt{\cos x}}{\sqrt{\sin x} \sin x \cos x} \, dx = \int \frac{\sqrt{\cos x}}{\sin^{3/2} x \cos x} \, dx \] ### Step 2: Simplify the integral Next, we divide the numerator and denominator by \( \cos^2 x \): \[ I = \int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx = \int \frac{\sqrt{\cot x}}{\sin x} \cdot \frac{1}{\cos x} \, dx \] This can be rewritten as: \[ I = \int \sqrt{\cot x} \cdot \sec^2 x \, dx \] ### Step 3: Substitute \( t = \tan x \) Let \( t = \tan x \), then \( dt = \sec^2 x \, dx \). The integral becomes: \[ I = \int \left(\frac{1}{\sqrt{t}}\right) \cdot dt \] This simplifies to: \[ I = \int t^{-3/2} \, dt \] ### Step 4: Integrate The integral of \( t^{-3/2} \) is: \[ \int t^{-3/2} \, dt = \frac{t^{-1/2}}{-1/2} + C = -2 t^{-1/2} + C \] Substituting back \( t = \tan x \): \[ I = -2 \sqrt{\tan x} + C \] ### Step 5: Express in terms of \( \sqrt{\cot x} \) Using the identity \( \tan x = \frac{1}{\cot x} \): \[ I = -2 \sqrt{\frac{1}{\cot x}} + C = -2 \frac{1}{\sqrt{\cot x}} + C \] This can be rewritten as: \[ I = -2 \sqrt{\cot x} + C \] ### Step 6: Identify \( P \) Comparing with the expression \( I = P \sqrt{\cot x} + Q \), we identify: \[ P = -2 \] Thus, the value of \( P \) is: \[ \boxed{-2} \]

To solve the integral \( I = \int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx \) and find the value of \( P \) in the expression \( I = P \sqrt{\cot x} + Q \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx \] We can rewrite \( \cot x \) as \( \frac{\cos x}{\sin x} \), so: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If int(sqrt(cotx))/(sinx cos x)dx=A sqrt(cotx)+B , then A is equal to ______________

intsqrt(cotx) dx

If intsqrt(cotx)/(sinxcosx)dx=asqrt(cotx)+b , then (A) 1 (B) 2 (C) -1 (D) -2

int(cotx)/(log(sinx)dx

int(sqrt(tanx))/(sinxcosx)dx is equal to.

Evaluate: int(sqrt(tanx))/(sinxcosx)dx

Evaluate: int(sqrt(tanx))/(sinxcosx)dx

Find int(sqrt(cotx)+sqrt(tanx))dx

Evaluate: int(cotx)/(sinx)dx

int(cotx+cot^3x)/(1+cot^3x)dx