Home
Class 12
MATHS
If f((3x-4)/(3x+4))=x+2, then int f(x)dx...

If `f((3x-4)/(3x+4))=x+2`, then `int` f(x)dx is equal to

A

`e^(x+2)log_(e)|(3x-4)/(3x+4)|`

B

`-(8)/(3)log_(e)|1-x|+(2)/(3)x+C`

C

`(8)/(3)log_(e)|x-1|+(x)/(3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the indefinite integral of the function \( f(x) \) defined by the equation \( f\left(\frac{3x-4}{3x+4}\right) = x + 2 \). ### Step-by-Step Solution: 1. **Substitution**: Let \( a = \frac{3x-4}{3x+4} \). We will express \( x \) in terms of \( a \). Rearranging gives: \[ a(3x + 4) = 3x - 4 \] \[ 3ax + 4a = 3x - 4 \] \[ 3ax - 3x = -4 - 4a \] \[ x(3a - 3) = -4(1 + a) \] \[ x = \frac{-4(1 + a)}{3(a - 1)} \] **Hint**: Use algebraic manipulation to isolate \( x \). 2. **Finding \( x + 2 \)**: Now, we need to find \( x + 2 \): \[ x + 2 = \frac{-4(1 + a)}{3(a - 1)} + 2 \] Converting 2 to a fraction with the same denominator: \[ x + 2 = \frac{-4(1 + a) + 6(a - 1)}{3(a - 1)} \] Simplifying the numerator: \[ = \frac{-4 - 4a + 6a - 6}{3(a - 1)} = \frac{2a - 10}{3(a - 1)} \] **Hint**: Remember to combine fractions by finding a common denominator. 3. **Expressing \( f(a) \)**: From the original function, we have: \[ f(a) = x + 2 = \frac{2a - 10}{3(a - 1)} \] **Hint**: Substitute back the expression for \( x + 2 \) into \( f(a) \). 4. **Finding \( f(x) \)**: Now, we can express \( f(x) \) as: \[ f(x) = \frac{2x - 10}{3(x - 1)} \] **Hint**: Ensure the variable in \( f \) matches the variable in the expression. 5. **Integrating \( f(x) \)**: We need to compute the integral: \[ \int f(x) \, dx = \int \frac{2x - 10}{3(x - 1)} \, dx \] This can be split into two parts: \[ = \frac{1}{3} \int (2 - \frac{8}{x - 1}) \, dx \] Now, integrating term by term: \[ = \frac{1}{3} \left( 2x - 8 \ln |x - 1| \right) + C \] Simplifying gives: \[ = \frac{2x}{3} - \frac{8}{3} \ln |x - 1| + C \] **Hint**: Use the linearity of integration to separate the terms. ### Final Result: The integral \( \int f(x) \, dx \) is: \[ \int f(x) \, dx = \frac{2x}{3} - \frac{8}{3} \ln |x - 1| + C \]

To solve the problem, we need to find the indefinite integral of the function \( f(x) \) defined by the equation \( f\left(\frac{3x-4}{3x+4}\right) = x + 2 \). ### Step-by-Step Solution: 1. **Substitution**: Let \( a = \frac{3x-4}{3x+4} \). We will express \( x \) in terms of \( a \). Rearranging gives: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : If f((3x-4)/(3x+4))=x+2 , then intf(x)dx is equal to (2)/(3)x-(8)/(3)log|x-1|+c . and STATEMENT-2 : If f((3x-4)/(3x+4))=x+2 , then f(x)=(2)/(3)-(8)/(3(x-1)) .

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If f(2-x)=f(2+x) and f(4-x)=f(4+x) for all x and f(x) is a function for which int_0^2 f(x)dx=5 , then int_0^(50)f(x)dx is equal to

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

If f(x)=lim_(n->oo)[2x+4x^3+6x^5++2n x^(2n-1)] (0ltxlt1) then int f(x)dx is equal to:

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

If f(4-x)=f(4+x) and f(8-x)=f(8+x) and f(x) is a function for which int_0^8 f(x)dx=5 . Then int_0^200 f(x)dx is equal to