Home
Class 12
MATHS
intx^(x)(1+log(e)x)dx is equal to...

`intx^(x)(1+log_(e)x)`dx is equal to

A

`x^(x)log_(e)x+C`

B

`ex^(x)+C`

C

`x^(x)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^x (1 + \log_e x) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^x \). To differentiate \( t \), we take the natural logarithm of both sides: \[ \log t = \log(x^x) = x \log x \] ### Step 2: Differentiate Now we differentiate both sides with respect to \( x \): \[ \frac{d}{dx}(\log t) = \frac{d}{dx}(x \log x) \] Using the product rule on the right side: \[ \frac{1}{t} \frac{dt}{dx} = \log x + 1 \] Thus, \[ \frac{dt}{dx} = t (\log x + 1) \] ### Step 3: Express \( dx \) Now we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{t (\log x + 1)} \] ### Step 4: Substitute in the Integral Substituting \( t = x^x \) and \( dx \) into the integral: \[ \int x^x (1 + \log_e x) \, dx = \int t (1 + \log_e x) \cdot \frac{dt}{t (\log x + 1)} \] The \( t \) cancels out: \[ = \int dt \] ### Step 5: Integrate The integral of \( dt \) is: \[ t + C \] ### Step 6: Substitute Back Now substitute back \( t = x^x \): \[ = x^x + C \] ### Conclusion Thus, the final answer is: \[ \int x^x (1 + \log_e x) \, dx = x^x + C \]

To solve the integral \( \int x^x (1 + \log_e x) \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^x \). To differentiate \( t \), we take the natural logarithm of both sides: \[ \log t = \log(x^x) = x \log x \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int{sin(log_(e)x)+cos(log_(e)x)}dx is equal to

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^(x))/( 1+log a ) + C C) ( ae )^(x) +C D) ((ae)^(x))/( log ae) +C

intx^(3) log x dx is equal to A) (x^(4) log x )/( 4) + C B) (x^(4))/( 8) ( log x - ( 4)/( x^(2)))+C C) (x^(4))/( 16) ( 4 log x -1) +C D) (x^(4))/( 16) ( 4 log x +1) + C

int cos (log_e x)dx is equal to

int_(1)^(4) log_(e)[x]dx equals

intx2^(ln(x^(2)+1))dx is equal to

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these