Home
Class 12
MATHS
int7^(7^(7^x))*7^(7^x)*7^x\ dx=...

`int7^(7^(7^x))*7^(7^x)*7^x\ dx=`

A

`(7^(7^(7^(x))))/((log_(e)7)^(3))+C`

B

`(7^(7^(7^(x))))/((log_(e)7)^(2))+C`

C

`7^(7^(7^(x))).(log7)^(3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int 7^{7^{7^x}} \cdot 7^{7^x} \cdot 7^x \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We can rewrite the integral as: \[ \int 7^{7^{7^x}} \cdot 7^{7^x} \cdot 7^x \, dx = \int 7^{(7^{7^x} + 7^x + x)} \, dx \] ### Step 2: Substitution Let \( t = 7^x \). Then, we differentiate to find \( dx \): \[ \frac{dt}{dx} = 7^x \ln(7) \implies dx = \frac{dt}{t \ln(7)} \] ### Step 3: Rewrite the Integral in Terms of \( t \) Now we substitute \( t \) into the integral: \[ 7^{7^{7^x}} = 7^{7^t}, \quad 7^{7^x} = 7^t, \quad 7^x = t \] Thus, the integral becomes: \[ \int 7^{7^t + t} \cdot \frac{dt}{t \ln(7)} \] ### Step 4: Further Simplification Now we can simplify the expression: \[ = \frac{1}{\ln(7)} \int \frac{7^{7^t + t}}{t} \, dt \] ### Step 5: Second Substitution Let \( u = 7^t \). Then, \( t = \log_7(u) \) and \( dt = \frac{du}{u \ln(7)} \). Substitute \( t \) and \( dt \): \[ = \frac{1}{\ln(7)} \int \frac{7^{u}}{\log_7(u)} \cdot \frac{du}{u \ln(7)} \] ### Step 6: Integrate Now we can integrate: \[ = \frac{1}{(\ln(7))^2} \int 7^u \, du \] The integral of \( 7^u \) is: \[ = \frac{7^u}{\ln(7)} + C \] ### Step 7: Substitute Back Now we substitute back \( u = 7^t \) and \( t = 7^x \): \[ = \frac{7^{7^{7^x}}}{(\ln(7))^2 \ln(7)} + C \] This simplifies to: \[ = \frac{7^{7^{7^x}}}{(\ln(7))^3} + C \] ### Final Answer Thus, the final result of the integral is: \[ \int 7^{7^{7^x}} \cdot 7^{7^x} \cdot 7^x \, dx = \frac{7^{7^{7^x}}}{(\ln(7))^3} + C \]

To solve the integral \( \int 7^{7^{7^x}} \cdot 7^{7^x} \cdot 7^x \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We can rewrite the integral as: \[ \int 7^{7^{7^x}} \cdot 7^{7^x} \cdot 7^x \, dx = \int 7^{(7^{7^x} + 7^x + x)} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

e^(7x)-e^(-7x)=

int (7x-2)^3 dx

int (7-2x)^5 dx

int (7-2x)^5 dx

Evaluate: int(4^(x)+5^(x))/(7^(x))dx

int(1)/((7x-2)^(2))dx

If int(1-x^(7))/(x(1+x^(7)))dx=alog_(e)|x|+blog_(e)|x^(7)+1|+c, then

int(sin^6x)/(cos^8x)\ dx= tan7x+C (b) (tan^7x)/7+C (c) (tan7x)/7+C (d) sec^7x+C

Evaluate: int(cos^7x)/(sinx)\ dx

int(3 -7x)^(5) dx