Home
Class 12
MATHS
The value of int(1)/(sin(x-(pi)/(3))cosx...

The value of `int(1)/(sin(x-(pi)/(3))cosx)dx` , is

A

`2log|sinx+sin*(x-pi//3)|+C`

B

`2log|secxsin(x-(pi)/(3))|+C`

C

`2log|sinx-sin(x-(pi)/(3))|+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{1}{\sin\left(x - \frac{\pi}{3}\right) \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sin\left(x - \frac{\pi}{3}\right) \cos x} \, dx \] ### Step 2: Multiply and Divide by \(\cos\left(\frac{\pi}{3}\right)\) We multiply and divide the integrand by \(\cos\left(\frac{\pi}{3}\right)\): \[ I = \frac{1}{\cos\left(\frac{\pi}{3}\right)} \int \frac{\cos\left(\frac{\pi}{3}\right)}{\sin\left(x - \frac{\pi}{3}\right) \cos x} \, dx \] Since \(\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\), we have: \[ I = 2 \int \frac{\frac{1}{2}}{\sin\left(x - \frac{\pi}{3}\right) \cos x} \, dx \] ### Step 3: Use the Identity for \(\sin\) and \(\cos\) Using the identity \(\sin(a - b) = \sin a \cos b - \cos a \sin b\), we can express \(\sin\left(x - \frac{\pi}{3}\right)\): \[ \sin\left(x - \frac{\pi}{3}\right) = \sin x \cos\left(\frac{\pi}{3}\right) - \cos x \sin\left(\frac{\pi}{3}\right) \] Substituting the values: \[ \sin\left(x - \frac{\pi}{3}\right) = \sin x \cdot \frac{1}{2} - \cos x \cdot \frac{\sqrt{3}}{2} \] ### Step 4: Substitute and Simplify Now substituting back into the integral, we get: \[ I = 2 \int \frac{1}{\left(\frac{1}{2} \sin x - \frac{\sqrt{3}}{2} \cos x\right) \cos x} \, dx \] This simplifies to: \[ I = 2 \int \frac{2}{\sin x - \sqrt{3} \cos x} \, dx \] ### Step 5: Use a Trigonometric Substitution Next, we can use the substitution \(u = \tan\left(\frac{x}{2}\right)\), which leads to: \[ \sin x = \frac{2u}{1 + u^2}, \quad \cos x = \frac{1 - u^2}{1 + u^2}, \quad dx = \frac{2}{1 + u^2} \, du \] Substituting these into the integral gives us a new integral in terms of \(u\). ### Step 6: Integrate After substituting and simplifying, we can integrate the resulting expression. The integral of \(\cot\) and \(\tan\) leads us to: \[ I = 2 \left( \log |\sin\left(x - \frac{\pi}{3}\right)| - \log |\cos x| \right) + C \] ### Step 7: Combine the Logarithms Using the property of logarithms, we combine the terms: \[ I = 2 \log \left| \frac{\sin\left(x - \frac{\pi}{3}\right)}{\cos x} \right| + C \] ### Final Result Thus, the value of the integral is: \[ I = 2 \log \left| \frac{\sin\left(x - \frac{\pi}{3}\right)}{\cos x} \right| + C \]

To solve the integral \( I = \int \frac{1}{\sin\left(x - \frac{\pi}{3}\right) \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{\sin\left(x - \frac{\pi}{3}\right) \cos x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi) sinx f(cosx)dx is

The value of int(sinx +cosx)/(3+sin2x)dx , is

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of int_(0)^(2pi)[sin2x(1+cos3x)] dx, where [t] denotes

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(-pi)^(pi) sin^(3) x cos^(2)x dx is

The value of int_(0)^(2pi) |cos x -sin x|dx is

The value of int_0^(pi//2)cosx\ e^(sin x)dx\ i s a. 1 b. e-1 c. 0 d. -1

The value of int_(pi//6)^(pi//3) (1)/( sin 2x) dx is