Home
Class 12
MATHS
The value of int(sqrt(1+x))/(x)dx , is...

The value of `int(sqrt(1+x))/(x)dx` , is

A

`2sqrt(1+x)+log|(sqrt(1+x)-1)/(sqrt(1+x)+1)|+C`

B

`2sqrt(1+x)+C`

C

`log_(e)|(sqrt(1+)x-1)/(sqrt(1+x+1))|+C`

D

`(sqrt(1+x)-1)/(sqrt(1+x)+1)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{1+x}}{x} \, dx \), we will use a substitution method. ### Step-by-Step Solution: 1. **Substitution:** Let \( t^2 = 1 + x \). Then, we can express \( x \) in terms of \( t \): \[ x = t^2 - 1 \] Now, differentiate both sides to find \( dx \): \[ dx = 2t \, dt \] 2. **Rewrite the Integral:** Substitute \( x \) and \( dx \) into the integral: \[ I = \int \frac{\sqrt{t^2}}{t^2 - 1} (2t \, dt) \] Since \( \sqrt{t^2} = t \) (assuming \( t \geq 0 \)), we have: \[ I = \int \frac{2t^2}{t^2 - 1} \, dt \] 3. **Separate the Integral:** We can separate the integral into two parts: \[ I = 2 \int \left( 1 + \frac{1}{t^2 - 1} \right) dt \] This simplifies to: \[ I = 2 \int dt + 2 \int \frac{1}{t^2 - 1} \, dt \] 4. **Integrate Each Part:** The first integral is straightforward: \[ 2 \int dt = 2t \] The second integral can be solved using partial fraction decomposition: \[ \frac{1}{t^2 - 1} = \frac{1}{(t-1)(t+1)} = \frac{1/2}{t-1} - \frac{1/2}{t+1} \] Thus, \[ \int \frac{1}{t^2 - 1} \, dt = \frac{1}{2} \ln |t-1| - \frac{1}{2} \ln |t+1| + C = \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| + C \] 5. **Combine Results:** Now, substituting back into the integral: \[ I = 2t + 2 \left( \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| \right) + C \] Simplifying gives: \[ I = 2t + \ln \left| \frac{t-1}{t+1} \right| + C \] 6. **Back Substitute \( t \):** Recall that \( t = \sqrt{1+x} \): \[ I = 2\sqrt{1+x} + \ln \left| \frac{\sqrt{1+x}-1}{\sqrt{1+x}+1} \right| + C \] ### Final Answer: Thus, the value of the integral is: \[ I = 2\sqrt{1+x} + \ln \left| \frac{\sqrt{1+x}-1}{\sqrt{1+x}+1} \right| + C \]

To solve the integral \( I = \int \frac{\sqrt{1+x}}{x} \, dx \), we will use a substitution method. ### Step-by-Step Solution: 1. **Substitution:** Let \( t^2 = 1 + x \). Then, we can express \( x \) in terms of \( t \): \[ x = t^2 - 1 ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of int(1)/(x+sqrt(x-1))dx , is

int(sqrt(x)dx)/(x-1)

Evaluate: int(sqrt(x))/(x+1)\ dx

Evaluate: int(sqrt(x))/(x+1)\ dx

Evaluate: int(sqrt(x)dx)/(1+x)

Evaluate: int(sqrt(x)dx)/(1+x)

The value of int_(1)^(4) e^(sqrt(x))dx , is

The value of int_2^3(sqrt(x))/(sqrt(5-x)+sqrt(x))dx is ______

int (1)/(sqrt(x)) dx

int(x)/(sqrt(x)+1)dx