Home
Class 12
MATHS
If intx log (1+(1)/(x))dx =f(x).lo...

If `intx log (1+(1)/(x))dx`
`=f(x).log_(e)(x+1)+g(x)log_(e)x+Lx+C` , then

A

`f(x)=(x^(2))/(2)`

B

`g(x)=log_(e)x`

C

L = 1

D

`L=(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \log\left(1 + \frac{1}{x}\right) dx \) and express it in the form \( f(x) \log(x + 1) + g(x) \log x + Lx + C \), we will proceed step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ \int x \log\left(1 + \frac{1}{x}\right) dx \] We can simplify the logarithmic expression: \[ \log\left(1 + \frac{1}{x}\right) = \log\left(\frac{x + 1}{x}\right) = \log(x + 1) - \log(x) \] Thus, we can rewrite the integral as: \[ \int x \left(\log(x + 1) - \log x\right) dx = \int x \log(x + 1) dx - \int x \log x dx \] ### Step 2: Apply Integration by Parts We will apply integration by parts to both integrals. Recall the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] #### For \( I_1 = \int x \log(x + 1) dx \): Let \( u = \log(x + 1) \) and \( dv = x \, dx \). Then, \( du = \frac{1}{x + 1} dx \) and \( v = \frac{x^2}{2} \). Applying integration by parts: \[ I_1 = \frac{x^2}{2} \log(x + 1) - \int \frac{x^2}{2} \cdot \frac{1}{x + 1} dx \] Now, simplify the integral: \[ \int \frac{x^2}{2(x + 1)} dx = \frac{1}{2} \int \left(x - 1 + \frac{1}{x + 1}\right) dx \] This can be separated into: \[ \frac{1}{2} \left(\int x \, dx - \int 1 \, dx + \int \frac{1}{x + 1} dx\right) \] Calculating these integrals: \[ \int x \, dx = \frac{x^2}{2}, \quad \int 1 \, dx = x, \quad \int \frac{1}{x + 1} dx = \log(x + 1) \] Thus, \[ \int \frac{x^2}{2(x + 1)} dx = \frac{1}{2} \left(\frac{x^2}{2} - x + \log(x + 1)\right) \] Combining everything, we have: \[ I_1 = \frac{x^2}{2} \log(x + 1) - \frac{1}{4} x^2 + \frac{1}{2} x - \frac{1}{2} \log(x + 1) \] #### For \( I_2 = \int x \log x \, dx \): Let \( u = \log x \) and \( dv = x \, dx \). Then, \( du = \frac{1}{x} dx \) and \( v = \frac{x^2}{2} \). Applying integration by parts: \[ I_2 = \frac{x^2}{2} \log x - \int \frac{x^2}{2} \cdot \frac{1}{x} dx = \frac{x^2}{2} \log x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \log x - \frac{x^2}{4} \] ### Step 3: Combine \( I_1 \) and \( I_2 \) Now we combine the results: \[ \int x \log\left(1 + \frac{1}{x}\right) dx = I_1 - I_2 \] Substituting \( I_1 \) and \( I_2 \): \[ = \left(\frac{x^2}{2} \log(x + 1) - \frac{1}{4} x^2 + \frac{1}{2} x - \frac{1}{2} \log(x + 1)\right) - \left(\frac{x^2}{2} \log x - \frac{x^2}{4}\right) \] ### Step 4: Simplify the Expression Combining all terms: \[ = \frac{x^2}{2} \log(x + 1) - \frac{x^2}{2} \log x + \frac{1}{2} x - \frac{1}{2} \log(x + 1) + \frac{1}{4} x^2 \] Now, we can express this in the required form: \[ = f(x) \log(x + 1) + g(x) \log x + Lx + C \] Where: - \( f(x) = \frac{x^2}{2} - \frac{1}{2} \) - \( g(x) = -\frac{x^2}{2} \) - \( L = \frac{1}{2} \) ### Final Result Thus, the values are: - \( f(x) = \frac{x^2 - 1}{2} \) - \( g(x) = -\frac{x^2}{2} \) - \( L = \frac{1}{2} \)

To solve the integral \( \int x \log\left(1 + \frac{1}{x}\right) dx \) and express it in the form \( f(x) \log(x + 1) + g(x) \log x + Lx + C \), we will proceed step by step. ### Step 1: Rewrite the Integral We start with the integral: \[ \int x \log\left(1 + \frac{1}{x}\right) dx \] We can simplify the logarithmic expression: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|log_(e) x|,then

int (dx)/(x(1+log_(e)x)(3+log_(e)x))

int (1+log_e x)/x dx

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

Evaluate: intx^2log(1+x)dx\

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).

intx^(x)(1+log_(e)x) dx is equal to

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Solve log_(e)(x-a)+log_(e)x=1.(a>0)

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then...

    Text Solution

    |

  2. Evaluate int(3x^(2)"tan"(1)/(x)-x"sec"^(2)(1)/(x))dx.

    Text Solution

    |

  3. If intx log (1+(1)/(x))dx =f(x).log(e)(x+1)+g(x)log(e)x+Lx+C , t...

    Text Solution

    |

  4. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  5. The value of the integral int(xsinx^(2)e^(secx^(2)))/(cos^(2)x^(2))dx ...

    Text Solution

    |

  6. int(1)/((x-1)sqrt(x^(2)-1))dx equals

    Text Solution

    |

  7. intsqrt(x-3)(sin^(-1)(Inx)+cos^(-1)(Inx))dx is equal to

    Text Solution

    |

  8. int(1-x^(7))/(x(1+x^(7)))dx equals

    Text Solution

    |

  9. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  10. int((x-x^5)^(1//5))/(x^6)dx is equal to :

    Text Solution

    |

  11. int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

    Text Solution

    |

  12. If intsqrt((cos^(3)x)/(sin^(11)x))dx =-2(Atan^(-9/2)+Btan^(-5/2)x) + C...

    Text Solution

    |

  13. int ((f (x) g' (x) -f' (x) g (x))/(f (x) g(x)))(log (g(x )) - log (f(x...

    Text Solution

    |

  14. int ((f (x) g' (x) -f' (x) g (x))/(f (x) g(x)))(log (g(x )) - log (f(x...

    Text Solution

    |

  15. int(x^(x))^(x)(2x log(e)x+x)dx is equal to

    Text Solution

    |

  16. Let the equation of a curve passing through the point (0,1) be given b...

    Text Solution

    |

  17. Evaluate: int1/(sin^4x+cos^4x)dx

    Text Solution

    |

  18. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  19. "Let "int e^(x){f(x)-f'(x)}dx=phi(x). " Then "int e^(x) f(x)dx " is "

    Text Solution

    |

  20. Evaluate "if " int(1)/(x+x^(5))dx=f(x)+c," then " int(x^(4))/(x+x^(5...

    Text Solution

    |