Home
Class 12
MATHS
int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-...

`int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx` equals to

A

`((e^(3 Inx)-e^(Inx))/(2x))e^(x^(2))+C`

B

`((x-1)xe^(x^(2)))/(2)+C`

C

`((x^(2)-1))/(2x)e^(x^(2))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{e^{x^2 + 4 \ln x} - x^3 e^{x^2}}{x - 1} \, dx, \] we can simplify the expression step by step. ### Step 1: Simplify the exponent We know that \(4 \ln x = \ln(x^4)\). Therefore, we can rewrite the integral as: \[ I = \int \frac{e^{x^2} \cdot e^{4 \ln x} - x^3 e^{x^2}}{x - 1} \, dx = \int \frac{e^{x^2} \cdot x^4 - x^3 e^{x^2}}{x - 1} \, dx. \] ### Step 2: Factor out common terms Notice that both terms in the numerator contain \(e^{x^2}\): \[ I = \int \frac{e^{x^2} (x^4 - x^3)}{x - 1} \, dx. \] ### Step 3: Factor the polynomial We can factor \(x^4 - x^3\): \[ x^4 - x^3 = x^3(x - 1). \] Substituting this back into the integral gives: \[ I = \int \frac{e^{x^2} \cdot x^3 (x - 1)}{x - 1} \, dx. \] ### Step 4: Cancel the common factor The \(x - 1\) terms cancel out (for \(x \neq 1\)): \[ I = \int x^3 e^{x^2} \, dx. \] ### Step 5: Substitution Let \(u = x^2\). Then, \(du = 2x \, dx\) or \(dx = \frac{du}{2x}\). Since \(x = \sqrt{u}\), we have: \[ dx = \frac{du}{2\sqrt{u}}. \] Thus, we can rewrite \(x^3\) as \((\sqrt{u})^3 = u^{3/2}\): \[ I = \int u^{3/2} e^u \cdot \frac{du}{2\sqrt{u}} = \frac{1}{2} \int u e^u \, du. \] ### Step 6: Integration by parts Using integration by parts, let \(v = e^u\) and \(w = u\): \[ \int u e^u \, du = u e^u - \int e^u \, du = u e^u - e^u + C. \] ### Step 7: Substitute back Thus, \[ I = \frac{1}{2} \left( u e^u - e^u \right) + C = \frac{1}{2} \left( x^2 e^{x^2} - e^{x^2} \right) + C. \] ### Step 8: Factor out \(e^{x^2}\) Factoring out \(e^{x^2}\): \[ I = \frac{e^{x^2}}{2} (x^2 - 1) + C. \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{e^{x^2}}{2} (x^2 - 1) + C. \]

To solve the integral \[ I = \int \frac{e^{x^2 + 4 \ln x} - x^3 e^{x^2}}{x - 1} \, dx, \] we can simplify the expression step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int_(-3)^(3)(x^(2))/((x^(2)+3)(1+e^(x)))dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

int (e^x)/e^(2x-4) dx

int(e^(x)(x-2))/(x(x^(2)+e^(x)))dx AAx gt0 is equal to

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

int(x-1)e^(3x)dx equals

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. Evaluate int(3x^(2)"tan"(1)/(x)-x"sec"^(2)(1)/(x))dx.

    Text Solution

    |

  2. If intx log (1+(1)/(x))dx =f(x).log(e)(x+1)+g(x)log(e)x+Lx+C , t...

    Text Solution

    |

  3. int(e^((x^(2)+4Inx))-x^(3)e^(x^(2)))/(x-1)dx equals to

    Text Solution

    |

  4. The value of the integral int(xsinx^(2)e^(secx^(2)))/(cos^(2)x^(2))dx ...

    Text Solution

    |

  5. int(1)/((x-1)sqrt(x^(2)-1))dx equals

    Text Solution

    |

  6. intsqrt(x-3)(sin^(-1)(Inx)+cos^(-1)(Inx))dx is equal to

    Text Solution

    |

  7. int(1-x^(7))/(x(1+x^(7)))dx equals

    Text Solution

    |

  8. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  9. int((x-x^5)^(1//5))/(x^6)dx is equal to :

    Text Solution

    |

  10. int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

    Text Solution

    |

  11. If intsqrt((cos^(3)x)/(sin^(11)x))dx =-2(Atan^(-9/2)+Btan^(-5/2)x) + C...

    Text Solution

    |

  12. int ((f (x) g' (x) -f' (x) g (x))/(f (x) g(x)))(log (g(x )) - log (f(x...

    Text Solution

    |

  13. int ((f (x) g' (x) -f' (x) g (x))/(f (x) g(x)))(log (g(x )) - log (f(x...

    Text Solution

    |

  14. int(x^(x))^(x)(2x log(e)x+x)dx is equal to

    Text Solution

    |

  15. Let the equation of a curve passing through the point (0,1) be given b...

    Text Solution

    |

  16. Evaluate: int1/(sin^4x+cos^4x)dx

    Text Solution

    |

  17. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  18. "Let "int e^(x){f(x)-f'(x)}dx=phi(x). " Then "int e^(x) f(x)dx " is "

    Text Solution

    |

  19. Evaluate "if " int(1)/(x+x^(5))dx=f(x)+c," then " int(x^(4))/(x+x^(5...

    Text Solution

    |

  20. If intf(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to

    Text Solution

    |