Home
Class 12
MATHS
int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is...

`int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx` is equal to

A

`log_(e)(tan^(2)x+sqrt(1+tan^(4)x))+C`

B

`(1)/(2)log_(e)(tan^(2)x+sqrt(1+tan^(4)x))+C`

C

`(1)/(4)log(tan^(2)x+sqrt(1+tan^(4)x))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\tan x}{\sqrt{\sin^4 x + \cos^4 x}} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator We start by simplifying the expression under the square root in the denominator: \[ \sin^4 x + \cos^4 x \] Using the identity \( a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \), we can rewrite it as: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x \] Thus, we have: \[ \sqrt{\sin^4 x + \cos^4 x} = \sqrt{1 - 2\sin^2 x \cos^2 x} \] ### Step 2: Rewrite the Integral Now we can rewrite the integral: \[ \int \frac{\tan x}{\sqrt{1 - 2\sin^2 x \cos^2 x}} \, dx \] Since \( \tan x = \frac{\sin x}{\cos x} \), we can express the integral as: \[ \int \frac{\sin x}{\cos x \sqrt{1 - 2\sin^2 x \cos^2 x}} \, dx \] ### Step 3: Use a Substitution Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \). Also, \( \sin x = \frac{t}{\sqrt{1+t^2}} \) and \( \cos x = \frac{1}{\sqrt{1+t^2}} \). Substituting these into the integral gives: \[ \int \frac{\frac{t}{\sqrt{1+t^2}}}{\frac{1}{\sqrt{1+t^2}} \sqrt{1 - 2\left(\frac{t^2}{1+t^2}\right)\left(\frac{1}{1+t^2}\right)}} \cdot \frac{dt}{1+t^2} \] This simplifies to: \[ \int \frac{t}{\sqrt{1 - \frac{2t^2}{(1+t^2)^2}}} \cdot \frac{dt}{1+t^2} \] ### Step 4: Further Simplification Now, we need to simplify the expression under the square root: \[ 1 - \frac{2t^2}{(1+t^2)^2} = \frac{(1+t^2)^2 - 2t^2}{(1+t^2)^2} = \frac{1 + 2t^2 + t^4 - 2t^2}{(1+t^2)^2} = \frac{1 + t^4}{(1+t^2)^2} \] Thus, we have: \[ \sqrt{1 - \frac{2t^2}{(1+t^2)^2}} = \frac{\sqrt{1 + t^4}}{1+t^2} \] ### Step 5: Substitute Back into the Integral The integral now becomes: \[ \int \frac{t(1+t^2)}{\sqrt{1+t^4}} \cdot \frac{dt}{1+t^2} = \int \frac{t}{\sqrt{1+t^4}} \, dt \] ### Step 6: Solve the Integral This integral can be solved using the substitution \( u = 1 + t^4 \), leading to: \[ \int \frac{t}{\sqrt{u}} \cdot \frac{du}{4t^3} = \frac{1}{4} \int u^{-1/2} \, du = \frac{1}{2} \sqrt{u} + C = \frac{1}{2} \sqrt{1 + t^4} + C \] ### Step 7: Substitute Back for \( t \) Finally, substituting back \( t = \tan x \): \[ \frac{1}{2} \sqrt{1 + \tan^4 x} + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\tan x}{\sqrt{\sin^4 x + \cos^4 x}} \, dx = \frac{1}{2} \sqrt{1 + \tan^4 x} + C \]

To solve the integral \( \int \frac{\tan x}{\sqrt{\sin^4 x + \cos^4 x}} \, dx \), we can follow these steps: ### Step 1: Simplify the Denominator We start by simplifying the expression under the square root in the denominator: \[ \sin^4 x + \cos^4 x \] Using the identity \( a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \), we can rewrite it as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int ( sin^(4) x - cos ^(4) x ) dx is equal to

int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

int(sin^2x)/(cos^(4)x)dx

int (1)/(sqrt(sin^(3) x cos x))dx =?

int(sinxcosx)/(sqrt(1-sin^(4)x)dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int(sqrt(tanx))/(sinxcosx)dx is equal to.

int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

Evaluate int(4)/(sin^(4)x+cos^(4)x)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. Evaluate: (sin^3x dx)/((cos^4x+3cos^2x+1)tan^(-1)(secx+cosx)

    Text Solution

    |

  2. int((x-x^5)^(1//5))/(x^6)dx is equal to :

    Text Solution

    |

  3. int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

    Text Solution

    |

  4. If intsqrt((cos^(3)x)/(sin^(11)x))dx =-2(Atan^(-9/2)+Btan^(-5/2)x) + C...

    Text Solution

    |

  5. int ((f (x) g' (x) -f' (x) g (x))/(f (x) g(x)))(log (g(x )) - log (f(x...

    Text Solution

    |

  6. int ((f (x) g' (x) -f' (x) g (x))/(f (x) g(x)))(log (g(x )) - log (f(x...

    Text Solution

    |

  7. int(x^(x))^(x)(2x log(e)x+x)dx is equal to

    Text Solution

    |

  8. Let the equation of a curve passing through the point (0,1) be given b...

    Text Solution

    |

  9. Evaluate: int1/(sin^4x+cos^4x)dx

    Text Solution

    |

  10. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  11. "Let "int e^(x){f(x)-f'(x)}dx=phi(x). " Then "int e^(x) f(x)dx " is "

    Text Solution

    |

  12. Evaluate "if " int(1)/(x+x^(5))dx=f(x)+c," then " int(x^(4))/(x+x^(5...

    Text Solution

    |

  13. If intf(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to

    Text Solution

    |

  14. If n is an odd positive integer, then int|x^(n)|dx is equal to

    Text Solution

    |

  15. If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C , then f'' (x)=

    Text Solution

    |

  16. int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

    Text Solution

    |

  17. If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

    Text Solution

    |

  18. Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x)...

    Text Solution

    |

  19. If intg(x)dx=g(x), then the value of the integral intf(x)g(x){f(x)+2...

    Text Solution

    |

  20. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |