Home
Class 12
MATHS
If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C...

If `inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C` , then f'' (x)=

A

29 f (x)

B

`-29 f(x)`

C

25 f(x)

D

`-25 f(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f''(x) \) given that: \[ \int e^{ax} \cos(bx) \, dx = \frac{e^{2x}}{29} f(x) + C \] ### Step 1: Identify the values of \( a \) and \( b \) From the given integral, we can use the known formula for the integral of the form \( \int e^{ax} \cos(bx) \, dx \): \[ \int e^{ax} \cos(bx) \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos(bx) + b \sin(bx)) + C \] Comparing this with the given expression \( \frac{e^{2x}}{29} f(x) + C \), we can see that: - The coefficient of \( e^{ax} \) suggests that \( a = 2 \). - The denominator \( a^2 + b^2 = 29 \). ### Step 2: Solve for \( b \) Substituting \( a = 2 \) into the equation \( a^2 + b^2 = 29 \): \[ 2^2 + b^2 = 29 \] \[ 4 + b^2 = 29 \] \[ b^2 = 29 - 4 = 25 \] \[ b = \sqrt{25} = 5 \] ### Step 3: Write the function \( f(x) \) Now that we have \( a = 2 \) and \( b = 5 \), we can express \( f(x) \): \[ f(x) = a \cos(bx) + b \sin(bx) = 2 \cos(5x) + 5 \sin(5x) \] ### Step 4: Differentiate to find \( f'(x) \) Now we will differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(2 \cos(5x) + 5 \sin(5x)) \] Using the chain rule: \[ f'(x) = 2 \cdot (-5 \sin(5x)) + 5 \cdot (5 \cos(5x)) \] \[ f'(x) = -10 \sin(5x) + 25 \cos(5x) \] ### Step 5: Differentiate again to find \( f''(x) \) Now we differentiate \( f'(x) \): \[ f''(x) = \frac{d}{dx}(-10 \sin(5x) + 25 \cos(5x)) \] Using the chain rule again: \[ f''(x) = -10 \cdot 5 \cos(5x) - 25 \cdot 5 \sin(5x) \] \[ f''(x) = -50 \cos(5x) - 125 \sin(5x) \] ### Step 6: Factor out common terms We can factor out \(-25\): \[ f''(x) = -25(2 \cos(5x) + 5 \sin(5x)) \] Since we know \( f(x) = 2 \cos(5x) + 5 \sin(5x) \): \[ f''(x) = -25 f(x) \] ### Final Answer Thus, the final result is: \[ f''(x) = -25 f(x) \] ---

To solve the problem, we need to find \( f''(x) \) given that: \[ \int e^{ax} \cos(bx) \, dx = \frac{e^{2x}}{29} f(x) + C \] ### Step 1: Identify the values of \( a \) and \( b \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(e^(ax).cosbx)dx

If inte^x\ (tanx+1)secx\ dx=e^x\ f(x)+C , then write the value of f(x) .

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

int e^(f(x)) dx = (x^(6))/(6) +C , find f(x).

Given inte^x\ (tanx+1)secx\ dx=e^xf(x)+c , write f(x) satisfying the above.

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c , then (a) f(x) is an even function (b) f(x) is a bounded function (c) the range of f(x) is (0,1) (d) f(x) has two points of extrema

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

STATEMENT-1 : If int(1)/(f(x))dx=2log|f(x)|+c , then f(x)=(x)/(2) . STATEMENT-2 : When f(x)=(x)/(2) , then int(1)/(f(x))dx=int(2)/(x)dx=2log|x|+c STATEMENT-3 : inte^(x^(2))dx=e^(x^(2))+c

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. If intf(x)dx=F(x), then int x^(3)f(x^(2))dx is equal to

    Text Solution

    |

  2. If n is an odd positive integer, then int|x^(n)|dx is equal to

    Text Solution

    |

  3. If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C , then f'' (x)=

    Text Solution

    |

  4. int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

    Text Solution

    |

  5. If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

    Text Solution

    |

  6. Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x)...

    Text Solution

    |

  7. If intg(x)dx=g(x), then the value of the integral intf(x)g(x){f(x)+2...

    Text Solution

    |

  8. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  9. intsin2xlog(e)cosx dx is equal to

    Text Solution

    |

  10. Let f(x) be a polynomial of degree three f(0) = -1 and f(1) = 0. Also,...

    Text Solution

    |

  11. int(1)/(x(1+root(3)(x))^(2))dxis equal to

    Text Solution

    |

  12. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  13. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  14. int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C, where

    Text Solution

    |

  15. int(x^(4)+1)/(x^(6)+1)dx is equal to

    Text Solution

    |

  16. int(x^(2)-1)/(xsqrt(x^(4)+3x^(2)+1))dx=

    Text Solution

    |

  17. int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  18. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  19. int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

    Text Solution

    |

  20. If int f(x)dx=f(x), then int {f(x)}^(2)dx is equal to

    Text Solution

    |