Home
Class 12
MATHS
int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is e...

`int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx` is equal to

A

`(1)/(2){x+(1)/(2sqrt(2))log|(sqrt(2)+sin2x)/(sqrt(2)-sin2x)|}+C`

B

`(1)/(2){x+(1)/(2sqrt(2))log|(1+sin2x)/(1-sin2x)|}+C`

C

`(1)/(2){x+(1)/(2sqrt(2))log|(sqrt(2)+sin2x)/(sqrt(2)-sin2x)|}+C`

D

`(1)/(2){x+(1)/(2sqrt(2))log|(1+sqrt(2)sin2x)/(1-sqrt(2)sin2x)|}+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin^4 x}{\sin^4 x + \cos^4 x} \, dx \), we will follow a series of steps to simplify and evaluate the integral. ### Step 1: Multiply and Divide by 2 We start by multiplying and dividing the integrand by 2: \[ I = \frac{1}{2} \int \frac{2 \sin^4 x}{\sin^4 x + \cos^4 x} \, dx \] ### Step 2: Add and Subtract \(\cos^4 x\) Next, we add and subtract \(\cos^4 x\) in the numerator: \[ I = \frac{1}{2} \int \frac{2 \sin^4 x + \cos^4 x - \cos^4 x}{\sin^4 x + \cos^4 x} \, dx \] This can be rewritten as: \[ I = \frac{1}{2} \int \left( \frac{\sin^4 x + \cos^4 x}{\sin^4 x + \cos^4 x} + \frac{\sin^4 x - \cos^4 x}{\sin^4 x + \cos^4 x} \right) \, dx \] The first term simplifies to 1: \[ I = \frac{1}{2} \int dx + \frac{1}{2} \int \frac{\sin^4 x - \cos^4 x}{\sin^4 x + \cos^4 x} \, dx \] ### Step 3: Simplify the Second Integral Now, we can simplify the second integral: \[ \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^4 x - \cos^4 x = \sin^2 x - \cos^2 x \] Thus, we rewrite the integral: \[ I = \frac{1}{2} \int dx + \frac{1}{2} \int \frac{\sin^2 x - \cos^2 x}{\sin^4 x + \cos^4 x} \, dx \] ### Step 4: Substitute for \(\sin^2 x - \cos^2 x\) We know that \(\sin^2 x - \cos^2 x = -\cos 2x\), so we can substitute: \[ I = \frac{1}{2} \int dx - \frac{1}{2} \int \frac{\cos 2x}{\sin^4 x + \cos^4 x} \, dx \] ### Step 5: Rewrite the Denominator Next, we rewrite the denominator: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x \] Let \(u = \sin 2x\), then \(du = 2\cos 2x \, dx\), or \(dx = \frac{du}{2\cos 2x}\). ### Step 6: Change of Variables Substituting into the integral: \[ I = \frac{1}{2} x - \frac{1}{4} \int \frac{du}{1 - \frac{1}{2}u^2} \] ### Step 7: Solve the Integral The integral \(\int \frac{du}{1 - \frac{1}{2}u^2}\) can be solved using the formula for the integral of the form \(\int \frac{dx}{a^2 - x^2}\): \[ \int \frac{du}{1 - \frac{1}{2}u^2} = \frac{2}{\sqrt{2}} \text{arctanh}\left(\frac{u}{\sqrt{2}}\right) + C \] ### Final Step: Combine Results Putting everything together, we have: \[ I = \frac{1}{2} x - \frac{1}{4} \cdot \frac{2}{\sqrt{2}} \text{arctanh}\left(\frac{\sin 2x}{\sqrt{2}}\right) + C \] Thus, the final result is: \[ I = \frac{1}{2} x - \frac{1}{2\sqrt{2}} \text{arctanh}\left(\frac{\sin 2x}{\sqrt{2}}\right) + C \]

To solve the integral \( I = \int \frac{\sin^4 x}{\sin^4 x + \cos^4 x} \, dx \), we will follow a series of steps to simplify and evaluate the integral. ### Step 1: Multiply and Divide by 2 We start by multiplying and dividing the integrand by 2: \[ I = \frac{1}{2} \int \frac{2 \sin^4 x}{\sin^4 x + \cos^4 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

int ( sin^(4) x - cos ^(4) x ) dx is equal to

int(1)/(sin^(2)x-4 cos^(2)x)dx

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int(sin^2x)/(cos^(4)x)dx

int(sinxcosx)/(sin^4x+cos^4x)dx

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

Evaluate int(4)/(sin^(4)x+cos^(4)x)dx

int (sin2x)/(sin^4x+cos^4x) dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. If n is an odd positive integer, then int|x^(n)|dx is equal to

    Text Solution

    |

  2. If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C , then f'' (x)=

    Text Solution

    |

  3. int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

    Text Solution

    |

  4. If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

    Text Solution

    |

  5. Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x)...

    Text Solution

    |

  6. If intg(x)dx=g(x), then the value of the integral intf(x)g(x){f(x)+2...

    Text Solution

    |

  7. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  8. intsin2xlog(e)cosx dx is equal to

    Text Solution

    |

  9. Let f(x) be a polynomial of degree three f(0) = -1 and f(1) = 0. Also,...

    Text Solution

    |

  10. int(1)/(x(1+root(3)(x))^(2))dxis equal to

    Text Solution

    |

  11. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  12. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  13. int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C, where

    Text Solution

    |

  14. int(x^(4)+1)/(x^(6)+1)dx is equal to

    Text Solution

    |

  15. int(x^(2)-1)/(xsqrt(x^(4)+3x^(2)+1))dx=

    Text Solution

    |

  16. int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  17. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  18. int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

    Text Solution

    |

  19. If int f(x)dx=f(x), then int {f(x)}^(2)dx is equal to

    Text Solution

    |

  20. Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

    Text Solution

    |