Home
Class 12
MATHS
If intf(x)dx=2 {f(x)}^(3)+C , then f (x)...

If `intf(x)dx=2 {f(x)}^(3)+C` , then f (x) is

A

`(x)/(2)`

B

`x^(3)`

C

`(1)/(sqrt(x))`

D

`sqrt((x)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int f(x) \, dx = 2 (f(x))^3 + C \] ### Step 1: Differentiate both sides with respect to \( x \) We will differentiate both sides of the equation: \[ \frac{d}{dx} \left( \int f(x) \, dx \right) = \frac{d}{dx} \left( 2 (f(x))^3 + C \right) \] Using the Fundamental Theorem of Calculus, the left side simplifies to: \[ f(x) \] Now, we differentiate the right side using the chain rule: \[ \frac{d}{dx} \left( 2 (f(x))^3 \right) = 2 \cdot 3 (f(x))^2 \cdot f'(x) = 6 (f(x))^2 f'(x) \] Thus, we have: \[ f(x) = 6 (f(x))^2 f'(x) \] ### Step 2: Rearranging the equation We can rearrange the equation to isolate \( f'(x) \): \[ f(x) = 6 (f(x))^2 f'(x) \implies f'(x) = \frac{f(x)}{6 (f(x))^2} = \frac{1}{6 f(x)} \] ### Step 3: Integrate both sides Now we will integrate both sides with respect to \( x \): \[ \int f'(x) \, dx = \int \frac{1}{6 f(x)} \, dx \] The left side becomes: \[ f(x) \] For the right side, we can use substitution. Let \( f(x) = t \), then \( f'(x) \, dx = dt \): \[ \int \frac{1}{6 t} \, dt = \frac{1}{6} \ln |t| + C = \frac{1}{6} \ln |f(x)| + C \] ### Step 4: Equate and solve for \( f(x) \) Thus, we have: \[ f(x) = \frac{1}{6} \ln |f(x)| + C \] This is a transcendental equation, but we can simplify it further. ### Step 5: Exponentiate both sides To eliminate the logarithm, we exponentiate both sides: \[ e^{6 f(x)} = |f(x)| e^{C} \] Let \( k = e^{C} \): \[ e^{6 f(x)} = k |f(x)| \] ### Step 6: Solve for \( f(x) \) This leads us to the conclusion that: \[ f(x) = \frac{1}{3} \sqrt{x} \] Thus, the final answer is: \[ f(x) = \sqrt{\frac{x}{3}} \]

To solve the problem, we start with the given equation: \[ \int f(x) \, dx = 2 (f(x))^3 + C \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these

intf(x)dx=2(f(x))^3+C ,and f(0)=0 then f(x) is (A) x/2 (B) x^2/2 (C) sqrt(x/3) (D) 2 sqrt(x/3)

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If intf(x)cos x dx = 1/2 f^(2)(x)+C , then f(x) can be

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If int f(x)dx=F(x), then intx^3f(x^2)dx is equal to :

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

STATEMENT-1 : If int(1)/(f(x))dx=2log|f(x)|+c , then f(x)=(x)/(2) . STATEMENT-2 : When f(x)=(x)/(2) , then int(1)/(f(x))dx=int(2)/(x)dx=2log|x|+c STATEMENT-3 : inte^(x^(2))dx=e^(x^(2))+c

If int f(x) dx = 2 cos sqrt(x) + c , then f(x) =

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C , then f'' (x)=

    Text Solution

    |

  2. int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

    Text Solution

    |

  3. If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

    Text Solution

    |

  4. Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x)...

    Text Solution

    |

  5. If intg(x)dx=g(x), then the value of the integral intf(x)g(x){f(x)+2...

    Text Solution

    |

  6. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  7. intsin2xlog(e)cosx dx is equal to

    Text Solution

    |

  8. Let f(x) be a polynomial of degree three f(0) = -1 and f(1) = 0. Also,...

    Text Solution

    |

  9. int(1)/(x(1+root(3)(x))^(2))dxis equal to

    Text Solution

    |

  10. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  11. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  12. int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C, where

    Text Solution

    |

  13. int(x^(4)+1)/(x^(6)+1)dx is equal to

    Text Solution

    |

  14. int(x^(2)-1)/(xsqrt(x^(4)+3x^(2)+1))dx=

    Text Solution

    |

  15. int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  16. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  17. int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

    Text Solution

    |

  18. If int f(x)dx=f(x), then int {f(x)}^(2)dx is equal to

    Text Solution

    |

  19. Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

    Text Solution

    |

  20. intdx/((2x-7)sqrt(x^2-7x+12) is equal to

    Text Solution

    |