Home
Class 12
MATHS
Let g (x) be a differentiable function ...

Let g (x) be a differentiable function satisfying `(d)/(dx){g(x)}=g(x) and g (0)=1` , then `intg(x)((2-sin2x)/(1-cos2x))dx` is equal to

A

`g(x)cotx+C`

B

`-g(x)cotx+C`

C

`(g(x))/(1-cos2x)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral: \[ \int g(x) \frac{2 - \sin(2x)}{1 - \cos(2x)} \, dx \] Given that \( g'(x) = g(x) \) and \( g(0) = 1 \), we can start by solving for \( g(x) \). ### Step 1: Solve for \( g(x) \) Since \( g'(x) = g(x) \), we can rewrite this as: \[ \frac{g'(x)}{g(x)} = 1 \] Integrating both sides with respect to \( x \): \[ \int \frac{g'(x)}{g(x)} \, dx = \int 1 \, dx \] This gives us: \[ \ln |g(x)| = x + C \] Exponentiating both sides, we have: \[ g(x) = e^{x+C} = e^C e^x \] Let \( e^C = k \), then: \[ g(x) = k e^x \] Using the initial condition \( g(0) = 1 \): \[ g(0) = k e^0 = k = 1 \] Thus, we find: \[ g(x) = e^x \] ### Step 2: Substitute \( g(x) \) into the integral Now we substitute \( g(x) \) into the integral: \[ \int g(x) \frac{2 - \sin(2x)}{1 - \cos(2x)} \, dx = \int e^x \frac{2 - \sin(2x)}{1 - \cos(2x)} \, dx \] ### Step 3: Simplify the integrand We know that: \[ 1 - \cos(2x) = 2\sin^2(x) \] Thus, we can rewrite the integral as: \[ \int e^x \frac{2 - \sin(2x)}{2\sin^2(x)} \, dx \] This simplifies to: \[ \int e^x \left(\frac{1}{\sin^2(x)} - \frac{\sin(2x)}{2\sin^2(x)}\right) \, dx \] ### Step 4: Further simplification Since \( \sin(2x) = 2\sin(x)\cos(x) \), we can rewrite: \[ \frac{\sin(2x)}{2\sin^2(x)} = \frac{2\sin(x)\cos(x)}{2\sin^2(x)} = \frac{\cos(x)}{\sin(x)} = \cot(x) \] Thus, the integral becomes: \[ \int e^x \left(\csc^2(x) - \cot(x)\right) \, dx \] ### Step 5: Split the integral Now we can split the integral: \[ \int e^x \csc^2(x) \, dx - \int e^x \cot(x) \, dx \] ### Step 6: Use integration by parts For the integral \( \int e^x \cot(x) \, dx \), we can use integration by parts. Let: - \( u = \cot(x) \) and \( dv = e^x \, dx \) - Then \( du = -\csc^2(x) \, dx \) and \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives us: \[ \int e^x \cot(x) \, dx = e^x \cot(x) - \int e^x (-\csc^2(x)) \, dx \] ### Step 7: Combine results Putting everything together, we find: \[ \int e^x \left(\csc^2(x) - \cot(x)\right) \, dx = e^x \cot(x) + C \] ### Final Result Thus, the final result for the integral is: \[ -e^x \cot(x) + C \]

To solve the problem, we need to find the value of the integral: \[ \int g(x) \frac{2 - \sin(2x)}{1 - \cos(2x)} \, dx \] Given that \( g'(x) = g(x) \) and \( g(0) = 1 \), we can start by solving for \( g(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

If f(x), g(x) be twice differentiable function on [0,2] satisfying f''(x)=g''(x) , f'(1)=4 and g'(1)=6, f(2)=3, g(2)=9, then f(x)-g(x) at x=4 equals to:- (a) -16 (b) -10 (c) -8

Suppose g(x) is a real valued differentiable function satisfying g'(x) + 2g(x) gt 1. Then show that e^(2x)(g(x)-1/2) is an increasing function.

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

Let g\ :[1,6]->[0,\ ) be a real valued differentiable function satisfying g^(prime)(x)=2/(x+g(x)) and g(1)=0, then the maximum value of g cannot exceed ln2 (b) ln6 6ln2 (d) 2\ ln\ 6

Let x=f(t) and y=g(t), where x and y are twice differentiable function. If f'(0)= g'(0) =f''(0) = 2. g''(0) = 6, then the value of ((d^(2)y)/(dx^(2)))_(t=0) is equal to

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

Let f be a differential function such that f(x)=f(2-x) and g(x)=f(1 +x) then (1) g(x) is an odd function (2) g(x) is an even function (3) graph of f(x) is symmetrical about the line x= 1 (4) f'(1)=0

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. int(sin^(4)x)/(sin^(4)x+cos^(4)x)dx is equal to

    Text Solution

    |

  2. If intf(x)dx=2 {f(x)}^(3)+C , then f (x) is

    Text Solution

    |

  3. Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x)...

    Text Solution

    |

  4. If intg(x)dx=g(x), then the value of the integral intf(x)g(x){f(x)+2...

    Text Solution

    |

  5. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  6. intsin2xlog(e)cosx dx is equal to

    Text Solution

    |

  7. Let f(x) be a polynomial of degree three f(0) = -1 and f(1) = 0. Also,...

    Text Solution

    |

  8. int(1)/(x(1+root(3)(x))^(2))dxis equal to

    Text Solution

    |

  9. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  10. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  11. int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C, where

    Text Solution

    |

  12. int(x^(4)+1)/(x^(6)+1)dx is equal to

    Text Solution

    |

  13. int(x^(2)-1)/(xsqrt(x^(4)+3x^(2)+1))dx=

    Text Solution

    |

  14. int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  15. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  16. int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

    Text Solution

    |

  17. If int f(x)dx=f(x), then int {f(x)}^(2)dx is equal to

    Text Solution

    |

  18. Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

    Text Solution

    |

  19. intdx/((2x-7)sqrt(x^2-7x+12) is equal to

    Text Solution

    |

  20. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |