Home
Class 12
MATHS
intsin2xlog(e)cosx dx is equal to...

`intsin2xlog_(e)cosx dx` is equal to

A

`((1)/(2)+log_(e)cosx)cos^(2)x+C`

B

`cos^(2)x.log_(e)cosx+C`

C

`((1)/(2)+log_(e)cosx)cos^(2)x+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin(2x) \log(\cos x) \, dx \), we can follow these steps: ### Step 1: Rewrite \( \sin(2x) \) Using the double angle identity for sine, we have: \[ \sin(2x) = 2 \sin(x) \cos(x) \] Thus, we can rewrite the integral as: \[ \int \sin(2x) \log(\cos x) \, dx = \int 2 \sin(x) \cos(x) \log(\cos x) \, dx \] ### Step 2: Substitution Let \( t = \cos(x) \). Then, the derivative \( dt = -\sin(x) \, dx \) or \( \sin(x) \, dx = -dt \). The integral becomes: \[ \int 2 \sin(x) \cos(x) \log(\cos x) \, dx = -2 \int t \log(t) \, dt \] ### Step 3: Integration by Parts Now we will use integration by parts to solve \( -2 \int t \log(t) \, dt \). Let: - \( u = \log(t) \) ⇒ \( du = \frac{1}{t} \, dt \) - \( dv = t \, dt \) ⇒ \( v = \frac{t^2}{2} \) Applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] Substituting the values: \[ -2 \left( \log(t) \cdot \frac{t^2}{2} - \int \frac{t^2}{2} \cdot \frac{1}{t} \, dt \right) \] This simplifies to: \[ -2 \left( \frac{t^2}{2} \log(t) - \int \frac{t}{2} \, dt \right) \] ### Step 4: Solve the Remaining Integral The remaining integral is: \[ \int \frac{t}{2} \, dt = \frac{t^2}{4} \] Thus, we have: \[ -2 \left( \frac{t^2}{2} \log(t) - \frac{t^2}{4} \right) = -t^2 \log(t) + \frac{t^2}{2} \] ### Step 5: Substitute Back Now substitute \( t = \cos(x) \): \[ -t^2 \log(t) + \frac{t^2}{2} = -\cos^2(x) \log(\cos(x)) + \frac{\cos^2(x)}{2} \] ### Final Answer Thus, the integral evaluates to: \[ \int \sin(2x) \log(\cos x) \, dx = -\cos^2(x) \log(\cos(x)) + \frac{\cos^2(x)}{2} + C \]

To solve the integral \( \int \sin(2x) \log(\cos x) \, dx \), we can follow these steps: ### Step 1: Rewrite \( \sin(2x) \) Using the double angle identity for sine, we have: \[ \sin(2x) = 2 \sin(x) \cos(x) \] Thus, we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

intsin2x*log_(e)cosxdx is equal to

int(x+sinx)/(1+cosx) dx is equal to

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

The value of int(cos2x)/(cosx) dx is equal to

The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the constant of integration)

The value of int(x e^ln(sinx)-cosx)dx is equal to

int(x^x)^x(2xlog_ex+x)dx is equal to

int_(0)^(pi)|1+2cosx| dx is equal to :

int(1)/(cosx-sinx)dx is equal to

intsin^2x/(1+cosx)^2dx