Home
Class 12
MATHS
int(1)/(x(1+root(3)(x))^(2))dxis equal t...

`int(1)/(x(1+root(3)(x))^(2))dx`is equal to

A

`3{"log"((x^(1//3))/(1+x^(1//3)))+(1)/(1+root(3)(x))}+C`

B

`3{"log"((x^(1//3))/(1+x^(1//3)))+(1)/(1+x}+C`

C

`3{"log"((x^(1//3))/(1+x^(1//3)))-(1)/(1+x^(1//3))}+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{x(1+\sqrt[3]{x})^2} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = t^3 \). Then, differentiating both sides gives \( dx = 3t^2 \, dt \). Also, we have \( \sqrt[3]{x} = t \). **Hint**: Use substitution to simplify the integral. 2. **Change of Variables**: Substitute \( x \) and \( dx \) in the integral: \[ \int \frac{1}{t^3(1+t)^2} \cdot 3t^2 \, dt = 3 \int \frac{t^2}{t^3(1+t)^2} \, dt = 3 \int \frac{1}{t(1+t)^2} \, dt \] **Hint**: Simplifying the integral after substitution can help in reducing the complexity. 3. **Partial Fraction Decomposition**: We can express \( \frac{1}{t(1+t)^2} \) in terms of partial fractions: \[ \frac{1}{t(1+t)^2} = \frac{A}{t} + \frac{B}{1+t} + \frac{C}{(1+t)^2} \] Multiplying through by the denominator \( t(1+t)^2 \) gives: \[ 1 = A(1+t)^2 + Bt(1+t) + Ct \] **Hint**: Set up the equation for partial fractions carefully to find the constants. 4. **Finding Coefficients**: Expanding the right-hand side: \[ 1 = A(1 + 2t + t^2) + Bt + Bt^2 + Ct \] Collecting like terms: \[ 1 = (A)t^2 + (2A + B + C)t + A \] By comparing coefficients, we get: - \( A = 1 \) - \( 2A + B + C = 0 \) - \( A = 0 \) From \( A = 1 \), we find \( B + C = -2 \) and \( B + C = -2 \). Solving these gives \( B = -1 \) and \( C = -1 \). **Hint**: Use the method of comparing coefficients to solve for the unknowns. 5. **Rewrite the Integral**: Now we can rewrite the integral: \[ 3 \int \left( \frac{1}{t} - \frac{1}{1+t} - \frac{1}{(1+t)^2} \right) dt \] **Hint**: Breaking down the integral into simpler parts makes it easier to integrate. 6. **Integrate Each Term**: \[ 3 \left( \ln |t| - \ln |1+t| + \frac{1}{1+t} \right) + C \] **Hint**: Remember to integrate each term separately. 7. **Substitute Back**: Replace \( t \) with \( \sqrt[3]{x} \): \[ 3 \left( \ln |\sqrt[3]{x}| - \ln |1+\sqrt[3]{x}| + \frac{1}{1+\sqrt[3]{x}} \right) + C \] **Hint**: Always substitute back to the original variable to express the final answer. 8. **Final Simplification**: The final answer can be simplified as: \[ \ln |x| - 3 \ln |1+\sqrt[3]{x}| + \frac{3}{1+\sqrt[3]{x}} + C \] **Hint**: Combine logarithmic terms using properties of logarithms if necessary. ### Final Answer: \[ \int \frac{1}{x(1+\sqrt[3]{x})^2} \, dx = 3 \left( \ln |\sqrt[3]{x}| - \ln |1+\sqrt[3]{x}| + \frac{1}{1+\sqrt[3]{x}} \right) + C \]

To solve the integral \( \int \frac{1}{x(1+\sqrt[3]{x})^2} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Substitution**: Let \( x = t^3 \). Then, differentiating both sides gives \( dx = 3t^2 \, dt \). Also, we have \( \sqrt[3]{x} = t \). **Hint**: Use substitution to simplify the integral. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(1)/(root(3)(x^2))dx

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

int (x)^(1/3) (root(7)(1+root(3)(x^(4))))dx is equal to

int(1+sqrt(x))/(1+root(3)(x))dx

int(root(3)(1+root(4)(x)))/(sqrtx)\ dx is equal to :

int_(1)^(sqrt(3)) (dx)/(1+x^(2)) is equal to

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int sqrt((x)/( 1-x))dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to