Home
Class 12
MATHS
int(x^(4)+1)/(x^(6)+1)dx is equal to...

`int(x^(4)+1)/(x^(6)+1)dx` is equal to

A

`tan^(-1)x+(1)/(3)tan^(-1)x^(3)+C`

B

`tan^(-1)x-(1)/(3)tan^(-1)x^(3)+C`

C

`-tan^(-1)x-(1)/(3)tan^(-1)x^(3)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x^4 + 1}{x^6 + 1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We can express the denominator \( x^6 + 1 \) as \( (x^2)^3 + 1^3 \). This allows us to use the sum of cubes factorization: \[ x^6 + 1 = (x^2 + 1)((x^2)^2 - x^2 \cdot 1 + 1^2) = (x^2 + 1)(x^4 - x^2 + 1) \] ### Step 2: Set Up the Integral Now, we rewrite the integral: \[ I = \int \frac{x^4 + 1}{(x^2 + 1)(x^4 - x^2 + 1)} \, dx \] ### Step 3: Perform Polynomial Long Division Since the degree of the numerator is less than the degree of the denominator, we can directly proceed to separate the fraction: \[ I = \int \left( \frac{x^4 - x^2 + 1}{(x^2 + 1)(x^4 - x^2 + 1)} + \frac{x^2}{(x^2 + 1)(x^4 - x^2 + 1)} \right) \, dx \] ### Step 4: Split the Integral Now we split the integral into two parts: \[ I = \int \frac{1}{x^2 + 1} \, dx + \int \frac{x^2}{x^4 - x^2 + 1} \, dx \] ### Step 5: Solve the First Integral The first integral is straightforward: \[ \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x) + C_1 \] ### Step 6: Solve the Second Integral For the second integral, we can use the substitution \( t = x^3 \), then \( dt = 3x^2 \, dx \) or \( dx = \frac{dt}{3x^2} \): \[ \int \frac{x^2}{x^4 - x^2 + 1} \, dx = \frac{1}{3} \int \frac{1}{t^2 + 1} \, dt = \frac{1}{3} \tan^{-1}(t) + C_2 \] Substituting back \( t = x^3 \): \[ \frac{1}{3} \tan^{-1}(x^3) + C_2 \] ### Step 7: Combine the Results Now we combine the results from both integrals: \[ I = \tan^{-1}(x) + \frac{1}{3} \tan^{-1}(x^3) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^4 + 1}{x^6 + 1} \, dx = \tan^{-1}(x) + \frac{1}{3} \tan^{-1}(x^3) + C \]

To solve the integral \( I = \int \frac{x^4 + 1}{x^6 + 1} \, dx \), we can follow these steps: ### Step 1: Rewrite the Denominator We can express the denominator \( x^6 + 1 \) as \( (x^2)^3 + 1^3 \). This allows us to use the sum of cubes factorization: \[ x^6 + 1 = (x^2 + 1)((x^2)^2 - x^2 \cdot 1 + 1^2) = (x^2 + 1)(x^4 - x^2 + 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) ( x^(4) + 1)/( x^(2) + 1) dx is equal to

int(x^(3)-1)/(x^(3)+x) dx is equal to:

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int(x^(2))/(1+x^(6)) dx

int(1)/(x^(2)+4x+13)dx is equal to

int((x4-x)^(1//4))/(x^(5))dx is equal to

int(1)/(x(x^(4)-1))dx is equal to

int ( x )/( 4+ x^(4)) dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int( dx )/( x ( x^(7) +1)) is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. Let f(x) be a polynomial satisfying f(0)=2 , f'(0)=3 and f''(x)=f(x) t...

    Text Solution

    |

  2. int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C, where

    Text Solution

    |

  3. int(x^(4)+1)/(x^(6)+1)dx is equal to

    Text Solution

    |

  4. int(x^(2)-1)/(xsqrt(x^(4)+3x^(2)+1))dx=

    Text Solution

    |

  5. int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  6. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  7. int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

    Text Solution

    |

  8. If int f(x)dx=f(x), then int {f(x)}^(2)dx is equal to

    Text Solution

    |

  9. Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

    Text Solution

    |

  10. intdx/((2x-7)sqrt(x^2-7x+12) is equal to

    Text Solution

    |

  11. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  12. int(1+x-x^(-1))e ^(x+x^(-1))dx=

    Text Solution

    |

  13. If I(n)=int("In "x)^(n)dx, " then " I(n)+nI(n-1)=

    Text Solution

    |

  14. The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

    Text Solution

    |

  15. The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitr...

    Text Solution

    |

  16. If f(x) = int ((x^(2) + sin ^(2)x))/(1+x^(2))sec^(2) x dx and f(0) = ...

    Text Solution

    |

  17. At present, a firm is manufacturing 2000 items. It is estimated tha...

    Text Solution

    |

  18. "If " int f(x)dx=Psi(x), " then " int x^(5)f(x)^(3)dx " is equal to "

    Text Solution

    |

  19. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  20. if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

    Text Solution

    |