Home
Class 12
MATHS
int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx ...

`int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx` is equal to

A

`sqrt(2)sin^(-1){(sqrt(2)x)/(x^(2)+1)}+C`

B

`(1)/(sqrt(2))sin^(-1){(sqrt(2)x)/(x^(2)+1)}`

C

`(1)/(2)sin^(-1){(sqrt(2)x*)/(x^(2)+1)}+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 - x^2}{(1 + x^2) \sqrt{1 + x^4}} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{1 - x^2}{(1 + x^2) \sqrt{1 + x^4}} \, dx. \] ### Step 2: Simplify the Expression We can divide the numerator and the denominator by \(x^2\): \[ \int \frac{\frac{1}{x^2} - 1}{\frac{1}{x^2} + \sqrt{1 + \frac{1}{x^4}}} \, dx. \] This gives us: \[ \int \frac{\frac{1}{x^2} - 1}{\frac{1}{x} + x \sqrt{1 + \frac{1}{x^2}}} \, dx. \] ### Step 3: Rewrite the Square Root Now, we can simplify the square root in the denominator. We rewrite \(1 + \frac{1}{x^2}\) as: \[ \sqrt{1 + \frac{1}{x^2}} = \sqrt{\frac{x^2 + 1}{x^2}} = \frac{\sqrt{x^2 + 1}}{x}. \] Thus, the integral becomes: \[ \int \frac{\frac{1}{x^2} - 1}{\frac{1}{x} + x \cdot \frac{\sqrt{x^2 + 1}}{x}} \, dx = \int \frac{\frac{1}{x^2} - 1}{\frac{1 + x \sqrt{x^2 + 1}}{x}} \, dx. \] ### Step 4: Substitute Let us make the substitution: \[ t = \frac{1}{x} + x. \] Differentiating gives: \[ dt = \left(-\frac{1}{x^2} + 1\right) dx. \] Thus, \[ dx = \frac{dt}{-\frac{1}{x^2} + 1}. \] ### Step 5: Substitute Back into the Integral Substituting \(t\) into the integral, we have: \[ \int \frac{-dt}{t \sqrt{t^2 - 2}}. \] ### Step 6: Use Integration Formula We can use the integration formula: \[ \int \frac{-dx}{x \sqrt{x^2 - a^2}} = \frac{1}{a} \cos^{-1} \left(\frac{x}{a}\right) + C. \] Here, \(a = \sqrt{2}\), so we have: \[ \frac{1}{\sqrt{2}} \cos^{-1} \left(\frac{t}{\sqrt{2}}\right) + C. \] ### Step 7: Substitute Back for \(t\) Substituting back for \(t\): \[ \frac{1}{\sqrt{2}} \cos^{-1} \left(\frac{\frac{1}{x} + x}{\sqrt{2}}\right) + C. \] ### Step 8: Final Simplification This can be rewritten in terms of \(\sin^{-1}\): \[ \frac{1}{\sqrt{2}} \sin^{-1} \left(\frac{\sqrt{2}x}{x^2 + 1}\right) + C. \] Thus, the final answer is: \[ \frac{1}{\sqrt{2}} \sin^{-1} \left(\frac{\sqrt{2}x}{x^2 + 1}\right) + C. \]

To solve the integral \[ \int \frac{1 - x^2}{(1 + x^2) \sqrt{1 + x^4}} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

int(xsin^(-1)x^(2))/(sqrt(1-x^(4)))dx

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

The value of int_(0)^(1)cos^(-1)((x-x^(2))-sqrt((1-x^(2))(2x-x^(2))))dx is equal to ___________.

int 1/((1-x^2)sqrt(1+x^2))dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. int(x^(4)+1)/(x^(6)+1)dx is equal to

    Text Solution

    |

  2. int(x^(2)-1)/(xsqrt(x^(4)+3x^(2)+1))dx=

    Text Solution

    |

  3. int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

    Text Solution

    |

  4. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  5. int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

    Text Solution

    |

  6. If int f(x)dx=f(x), then int {f(x)}^(2)dx is equal to

    Text Solution

    |

  7. Evaluate int(cosx-sinx)/(cosx+sinx)(2+2sin2x)dx

    Text Solution

    |

  8. intdx/((2x-7)sqrt(x^2-7x+12) is equal to

    Text Solution

    |

  9. The value of int x log x (log x - 1) dx is equal to

    Text Solution

    |

  10. int(1+x-x^(-1))e ^(x+x^(-1))dx=

    Text Solution

    |

  11. If I(n)=int("In "x)^(n)dx, " then " I(n)+nI(n-1)=

    Text Solution

    |

  12. The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

    Text Solution

    |

  13. The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitr...

    Text Solution

    |

  14. If f(x) = int ((x^(2) + sin ^(2)x))/(1+x^(2))sec^(2) x dx and f(0) = ...

    Text Solution

    |

  15. At present, a firm is manufacturing 2000 items. It is estimated tha...

    Text Solution

    |

  16. "If " int f(x)dx=Psi(x), " then " int x^(5)f(x)^(3)dx " is equal to "

    Text Solution

    |

  17. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  18. if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

    Text Solution

    |

  19. int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

    Text Solution

    |

  20. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |