Home
Class 12
MATHS
The value of int(sin^(2)xcos^(2)x)/((sin...

The value of `int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx` , is

A

`(1)/(3(1+tan^(3)x))`

B

`-(1)/(3(1+tan^(3)x))`

C

`(1)/(1+tan^(3)x)`

D

`-(1)/(1+tan^(3)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We know that \[ \sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x). \] Thus, we can express the integral as: \[ I = \int \frac{\sin^2 x \cos^2 x}{\left((\sin x + \cos x)(\sin^2 x - \sin x \cos x + \cos^2 x)\right)^2} \, dx. \] ### Step 2: Factor Out Cosine Next, we can factor out \(\cos^6 x\) from the denominator: \[ I = \int \frac{\sin^2 x \cos^2 x}{\cos^6 x \left(\tan^3 x + 1\right)^2} \, dx. \] This simplifies to: \[ I = \int \frac{\tan^2 x}{(\tan^3 x + 1)^2} \, dx. \] ### Step 3: Substitution Now, we can use the substitution \(t = \tan x\). The derivative \(dt = \sec^2 x \, dx\) implies \(dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2}\). Substituting these into the integral gives: \[ I = \int \frac{t^2}{(t^3 + 1)^2} \cdot \frac{dt}{1 + t^2}. \] ### Step 4: Simplify the Integral This can be rewritten as: \[ I = \int \frac{t^2}{(t^3 + 1)^2 (1 + t^2)} \, dt. \] ### Step 5: Further Simplification Now, we can simplify the integral further. We can express \(t^3 + 1\) as \((t + 1)(t^2 - t + 1)\). Thus, we can rewrite the integral as: \[ I = \int \frac{t^2}{(t + 1)^2 (t^2 - t + 1)^2} \, dt. \] ### Step 6: Perform Partial Fraction Decomposition Next, we can use partial fraction decomposition to break down the integrand into simpler fractions. Assuming: \[ \frac{t^2}{(t + 1)^2 (t^2 - t + 1)^2} = \frac{A}{t + 1} + \frac{B}{(t + 1)^2} + \frac{Ct + D}{t^2 - t + 1} + \frac{Et + F}{(t^2 - t + 1)^2}, \] we can solve for the coefficients \(A, B, C, D, E, F\). ### Step 7: Integrate Each Term After finding the coefficients, we integrate each term separately. The integrals will involve logarithmic and arctangent functions. ### Final Step: Substitute Back Finally, we substitute back \(t = \tan x\) to express the result in terms of \(x\). The final answer will be: \[ I = -\frac{1}{3} \left(1 + \tan^3 x\right) + C, \] where \(C\) is the constant of integration.

To solve the integral \[ I = \int \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

3. int(dx)/(sin^(2)x+cos^(2)x)

Evaluate : int(dx)/(sin^2xcos^2x)

Evaluate: int _0^((pi)/(2)) (sin ^(2) x .cos ^(2) x )/((sin ^(3) x+ cos ^(3) x)^(2)) dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

Evaluate: int1/(sin^4xcos^2x)dx

Evaluate: int1/(sin^2xcos^2x)\ dx

Evaluate : int_(0)^(pi/2)(sin^2x-cos^2x)/(sin^3x+cos^3x)dx

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. int(1+x-x^(-1))e ^(x+x^(-1))dx=

    Text Solution

    |

  2. If I(n)=int("In "x)^(n)dx, " then " I(n)+nI(n-1)=

    Text Solution

    |

  3. The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

    Text Solution

    |

  4. The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitr...

    Text Solution

    |

  5. If f(x) = int ((x^(2) + sin ^(2)x))/(1+x^(2))sec^(2) x dx and f(0) = ...

    Text Solution

    |

  6. At present, a firm is manufacturing 2000 items. It is estimated tha...

    Text Solution

    |

  7. "If " int f(x)dx=Psi(x), " then " int x^(5)f(x)^(3)dx " is equal to "

    Text Solution

    |

  8. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  9. if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

    Text Solution

    |

  10. int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

    Text Solution

    |

  11. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |

  12. intsqrt(x-3)(sin^(-1)(Inx)+cos^(-1)(Inx))dx is equal to

    Text Solution

    |

  13. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  14. inte^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))dx is equal to

    Text Solution

    |

  15. int(sin(101x).sin^(99)x)dx equals

    Text Solution

    |

  16. Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is a...

    Text Solution

    |

  17. int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx is equal to

    Text Solution

    |

  18. If int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ dx = lambda ((2+x)/(2-x))^mu + ...

    Text Solution

    |

  19. Let f(x) be a quadratic function such that f(0)=1 and int(f(x))/(x^2(x...

    Text Solution

    |

  20. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |