Home
Class 12
MATHS
if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/...

if `int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c` then `f(x)`

A

`-cotx`

B

`-"cosec "x`

C

`"cosec "x`

D

cot x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 - 5\sin^2 x}{\cos^5 x \sin^2 x} \, dx = \frac{f(x)}{\cos^5 x} + c, \] we need to find the function \( f(x) \). ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{1 - 5\sin^2 x}{\cos^5 x \sin^2 x} \, dx = \int \left( \frac{1}{\cos^5 x \sin^2 x} - \frac{5\sin^2 x}{\cos^5 x \sin^2 x} \right) \, dx. \] This simplifies to: \[ \int \left( \frac{1}{\cos^5 x \sin^2 x} - \frac{5}{\cos^5 x} \right) \, dx. \] ### Step 2: Split the Integral Now we can split the integral into two parts: \[ \int \frac{1}{\cos^5 x \sin^2 x} \, dx - 5 \int \frac{1}{\cos^5 x} \, dx. \] ### Step 3: Use Trigonometric Identity Using the identity \( \sin^2 x + \cos^2 x = 1 \), we can express \( 1 \) as \( \cos^2 x + \sin^2 x \): \[ \int \left( \frac{\cos^2 x}{\cos^5 x \sin^2 x} + \frac{\sin^2 x}{\cos^5 x \sin^2 x} \right) \, dx = \int \left( \frac{\cos^2 x}{\cos^5 x \sin^2 x} + \frac{1}{\cos^5 x} \right) \, dx. \] This gives us: \[ \int \left( \frac{1}{\cos^3 x \sin^2 x} + \frac{1}{\cos^5 x} \right) \, dx. \] ### Step 4: Substitute Variables Now we will use the substitution \( t = \cos^4 x \sin x \). Then, we differentiate: \[ dt = (4\cos^3 x (-\sin x) \sin x + \cos^4 x \cos x) \, dx = (-4\cos^3 x \sin^2 x + \cos^4 x \cos x) \, dx. \] ### Step 5: Rewrite the Integral Rearranging gives us: \[ \int \frac{dt}{t^2}. \] ### Step 6: Integrate Using the formula for integration: \[ \int t^{-2} \, dt = -\frac{1}{t} + c. \] ### Step 7: Back Substitute Substituting back for \( t \): \[ -\frac{1}{\cos^4 x \sin x} + c. \] ### Step 8: Final Form To express this in the required form, we multiply and divide by \( \cos x \): \[ -\frac{\cos x}{\cos^5 x \sin x} + c = -\cot x \cdot \frac{1}{\cos^5 x} + c. \] Thus, we find: \[ f(x) = -\cot x. \] ### Conclusion The final answer is: \[ f(x) = -\cot x. \]

To solve the integral \[ \int \frac{1 - 5\sin^2 x}{\cos^5 x \sin^2 x} \, dx = \frac{f(x)}{\cos^5 x} + c, \] we need to find the function \( f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin2x)/(sin5xsin3x)dx

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

int(sin 2x)/(5-cos^(2) x)dx

Evaluate: int(sin^5x)/(cos^4x)dx

Evaluate: int(sin^5x)/(cos^4x)\ dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

int(sin2x)/(sin5xsin3x)dx is equal to

If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C , then

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. "If " int f(x)dx=Psi(x), " then " int x^(5)f(x)^(3)dx " is equal to "

    Text Solution

    |

  2. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  3. if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

    Text Solution

    |

  4. int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

    Text Solution

    |

  5. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |

  6. intsqrt(x-3)(sin^(-1)(Inx)+cos^(-1)(Inx))dx is equal to

    Text Solution

    |

  7. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  8. inte^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))dx is equal to

    Text Solution

    |

  9. int(sin(101x).sin^(99)x)dx equals

    Text Solution

    |

  10. Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is a...

    Text Solution

    |

  11. int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx is equal to

    Text Solution

    |

  12. If int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ dx = lambda ((2+x)/(2-x))^mu + ...

    Text Solution

    |

  13. Let f(x) be a quadratic function such that f(0)=1 and int(f(x))/(x^2(x...

    Text Solution

    |

  14. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |

  15. int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

    Text Solution

    |

  16. intx^(27)(1+x+x^(2))^(6)(6x^(2)+5x+4)dx=

    Text Solution

    |

  17. Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, if...

    Text Solution

    |

  18. Evaluate int(e^(tan^(-1)x))/((1+x^(2)))[(sec^(-1)sqrt(1+x^(2)))^(2)+"c...

    Text Solution

    |

  19. int (x^2(xsec^2x+tanx))/(xtanx+1)^2

    Text Solution

    |

  20. int (mx^(m+2n-1)-nx^(n-1))/(x^(2m+2n)+2x^(m+n)+1)dx is equal to

    Text Solution

    |