Home
Class 12
MATHS
int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^...

`int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx`

A

`(7x^(7m)+2x^(2m)+14x^(m))^((m+1)/(m))/(14(m+1))+C`

B

`(2x^(7m)+14x^(2m)+7x^(m))^((m+1)/(m))/(14(m+1))+C`

C

`(2x^(7m)+7x^(2m)+14x^(m))^((m+1)/(m))/(14(m+1))+C`

D

`(7x^(7m)+2x^(2m)+x^(m))^((m+1)/(m))/(14(m+1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int (x^{7m} + x^{2m} + x^m)(2x^{6m} + 7x^m + 14)^{\frac{1}{m}} \, dx, \] we will follow these steps: ### Step 1: Factor out \( x \) First, we can factor out \( x \) from the first part of the integrand: \[ x^{7m} + x^{2m} + x^m = x^{m}(x^{6m} + x^{m} + 1). \] Thus, we rewrite the integral as: \[ \int x^{m}(x^{6m} + x^{m} + 1)(2x^{6m} + 7x^m + 14)^{\frac{1}{m}} \, dx. \] ### Step 2: Substitute \( t \) Next, we make a substitution for the second part of the integrand. Let: \[ t = 2x^{7m} + 7x^{2m} + 14x^m. \] Now, we differentiate \( t \): \[ \frac{dt}{dx} = 14mx^{7m-1} + 14mx^{m-1}. \] This implies: \[ dt = (14mx^{7m-1} + 14mx^{m-1}) \, dx. \] ### Step 3: Express \( dx \) Rearranging gives: \[ dx = \frac{dt}{14m(x^{7m-1} + x^{m-1})}. \] ### Step 4: Substitute back into the integral Now substituting back into the integral, we have: \[ \int x^{m}(x^{6m} + x^{m} + 1)(2x^{7m} + 7x^{2m} + 14x^m)^{\frac{1}{m}} \cdot \frac{dt}{14m(x^{7m-1} + x^{m-1})}. \] ### Step 5: Simplify the integral The integral simplifies to: \[ \frac{1}{14m} \int t^{\frac{1}{m}} \, dt. \] ### Step 6: Integrate Using the formula for integration: \[ \int t^{n} \, dt = \frac{t^{n+1}}{n+1} + C, \] we find: \[ \frac{1}{14m} \cdot \frac{t^{\frac{1}{m} + 1}}{\frac{1}{m} + 1} + C. \] ### Step 7: Substitute back \( t \) Substituting back \( t = 2x^{7m} + 7x^{2m} + 14x^m \): \[ = \frac{1}{14m} \cdot \frac{(2x^{7m} + 7x^{2m} + 14x^m)^{\frac{1}{m} + 1}}{\frac{1}{m} + 1} + C. \] ### Step 8: Final Simplification This gives us: \[ = \frac{(2x^{7m} + 7x^{2m} + 14x^m)^{\frac{1}{m} + 1}}{14(m + 1)} + C. \] ### Final Answer Thus, the final answer is: \[ \frac{(2x^{7m} + 7x^{2m} + 14x^m)^{\frac{1}{m} + 1}}{14(m + 1)} + C. \]

To solve the integral \[ \int (x^{7m} + x^{2m} + x^m)(2x^{6m} + 7x^m + 14)^{\frac{1}{m}} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(x^(3m)+x^(2m)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

Evaluate: for m in N , intx^(3m)+x^(2n)+x^m)(2x^(2m)+3x^m+6)^(1/m)dx ,x >0

For any natural number m, evaulate, int(x^(3m)+x^(2m)+x^(m))(2x^(2m)+3x^9m)+6^(t//m)dx, x gt0 int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1) dx is equal to:

If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^3 dx=f(x)+c , then f(x) is:

The number of positive integral values of m , m le 16 for which the equation (x^(2) +x+1) ^(2) - (m-3)(x^(2) +x+1) +m=0, has 4 distinct real root is:

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

If m, n in N , then int_(0)^(pi//2)((sin^(m)x)^(1/n))/((sin^(m)x)^(1/n)+(cos^(m)x)^(1/n))dx is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  2. if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

    Text Solution

    |

  3. int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

    Text Solution

    |

  4. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |

  5. intsqrt(x-3)(sin^(-1)(Inx)+cos^(-1)(Inx))dx is equal to

    Text Solution

    |

  6. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  7. inte^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))dx is equal to

    Text Solution

    |

  8. int(sin(101x).sin^(99)x)dx equals

    Text Solution

    |

  9. Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is a...

    Text Solution

    |

  10. int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx is equal to

    Text Solution

    |

  11. If int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ dx = lambda ((2+x)/(2-x))^mu + ...

    Text Solution

    |

  12. Let f(x) be a quadratic function such that f(0)=1 and int(f(x))/(x^2(x...

    Text Solution

    |

  13. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |

  14. int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

    Text Solution

    |

  15. intx^(27)(1+x+x^(2))^(6)(6x^(2)+5x+4)dx=

    Text Solution

    |

  16. Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, if...

    Text Solution

    |

  17. Evaluate int(e^(tan^(-1)x))/((1+x^(2)))[(sec^(-1)sqrt(1+x^(2)))^(2)+"c...

    Text Solution

    |

  18. int (x^2(xsec^2x+tanx))/(xtanx+1)^2

    Text Solution

    |

  19. int (mx^(m+2n-1)-nx^(n-1))/(x^(2m+2n)+2x^(m+n)+1)dx is equal to

    Text Solution

    |

  20. Evaluate int(dx)/(tanx+cotx+secx+cosecx).

    Text Solution

    |