Home
Class 12
MATHS
int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx i...

`int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx` is equal to

A

`(5)/(11)(x^(2)+2x)^(11//10)+C`

B

`(5)/(11)(x+1)^(11//10)+C`

C

`(6)/(7)(x+1)^(11//10)+C`

D

`(11)/(5)(x^(2)+2x)^(11//10)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (x^2 + x)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int (x^2 + x)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx \] ### Step 2: Factor Out \( x \) We can factor \( x \) from \( x^2 + x \): \[ = \int x(x + 1)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx \] ### Step 3: Simplify the Expression Inside the Integral Now, we simplify the expression inside the integral: \[ = \int x(x + 1)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx \] This can be rewritten as: \[ = \int x(x + 1)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx \] ### Step 4: Substitute \( t = x^2 + 2x \) Let’s make a substitution. Let: \[ t = x^2 + 2x \] Then, differentiate \( t \): \[ dt = (2x + 2) \, dx = 2(x + 1) \, dx \quad \Rightarrow \quad dx = \frac{dt}{2(x + 1)} \] ### Step 5: Substitute Back into the Integral Substituting \( t \) and \( dx \) back into the integral: \[ = \int x \cdot t^{\frac{1}{10}} \cdot \frac{dt}{2(x + 1)} \] Notice that \( x = \frac{t - 2x}{2} \). However, we can simplify this further by recognizing that: \[ = \frac{1}{2} \int t^{\frac{1}{10}} \, dt \] ### Step 6: Integrate Now we can integrate: \[ = \frac{1}{2} \cdot \frac{t^{\frac{1}{10} + 1}}{\frac{1}{10} + 1} + C \] \[ = \frac{1}{2} \cdot \frac{t^{\frac{11}{10}}}{\frac{11}{10}} + C \] \[ = \frac{5}{11} t^{\frac{11}{10}} + C \] ### Step 7: Substitute Back for \( t \) Now we substitute back \( t = x^2 + 2x \): \[ = \frac{5}{11} (x^2 + 2x)^{\frac{11}{10}} + C \] ### Final Answer Thus, the final answer is: \[ \int (x^2 + x)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx = \frac{5}{11} (x^2 + 2x)^{\frac{11}{10}} + C \]

To solve the integral \( \int (x^2 + x)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int (x^2 + x)(x^{-8} + 2x^{-9})^{\frac{1}{10}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int(x+1)^(2)e^(x)dx is equal to

The integral int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to (where C is a constant of integration)

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(2x^(2)(1+2x^(2)))/((1+x^(2)+x^(4))^(2))dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

OBJECTIVE RD SHARMA ENGLISH-INDEFINITE INTEGRALS-Solved Example
  1. "The integral " int(1+x-(1)/(x))e^(x+(1)/(x))dx " is equal to "

    Text Solution

    |

  2. inte^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))dx is equal to

    Text Solution

    |

  3. int(sin(101x).sin^(99)x)dx equals

    Text Solution

    |

  4. Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is a...

    Text Solution

    |

  5. int(x^(2)+x)(x^(-8)+2x^(-9))^(1//10)dx is equal to

    Text Solution

    |

  6. If int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ dx = lambda ((2+x)/(2-x))^mu + ...

    Text Solution

    |

  7. Let f(x) be a quadratic function such that f(0)=1 and int(f(x))/(x^2(x...

    Text Solution

    |

  8. int (x dx)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))) is equal to

    Text Solution

    |

  9. int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

    Text Solution

    |

  10. intx^(27)(1+x+x^(2))^(6)(6x^(2)+5x+4)dx=

    Text Solution

    |

  11. Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, if...

    Text Solution

    |

  12. Evaluate int(e^(tan^(-1)x))/((1+x^(2)))[(sec^(-1)sqrt(1+x^(2)))^(2)+"c...

    Text Solution

    |

  13. int (x^2(xsec^2x+tanx))/(xtanx+1)^2

    Text Solution

    |

  14. int (mx^(m+2n-1)-nx^(n-1))/(x^(2m+2n)+2x^(m+n)+1)dx is equal to

    Text Solution

    |

  15. Evaluate int(dx)/(tanx+cotx+secx+cosecx).

    Text Solution

    |

  16. int (x^(2)(1-"ln"x))/(("ln"^(4)x-x^(4))dx is equal to

    Text Solution

    |

  17. The integral int (2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx is equal to

    Text Solution

    |

  18. If int(dx)/(cos^(3)xsqrt(sin2x))=a(tan^(2)x+b)sqrt(tanx)+C, then

    Text Solution

    |

  19. "If"int(dx)/(x^(3)(1+x^(6))^(2/3))=xf(x)(1+x^(6))^(1/3)+C where, C is ...

    Text Solution

    |

  20. int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

    Text Solution

    |