Home
Class 12
MATHS
Statement - 1 : The value of the integra...

Statement - 1 : The value of the integral `int(e^(3x)+e^(x))/(e^(4x)+1)dx " is "(1)/(sqrt(2))tan^(-1)((e^(x)-e^(-x))/(sqrt(2)))+C`
Statement -2: A primitive of the function f (x) `=(x^(2)+1)/(x^(4)+1)`is `(1)/(sqrt(2))tan^(-1)((x^(2)-1)/(sqrt(2)x))`.

A

Statement - 1 True ,
Statement -2 is True , Statement -2 is a correct
explanation for Statement -1.

B

Statement - 1 is True ,
Statement -2 is True , Statement -2 is a correct
.explanation for Statement -1.

C

Statement - 1 True ,Statement - 2 is False.

D

Statement - 1 is False , Statement - 2 is True.

Text Solution

AI Generated Solution

To solve the given integral \(\int \frac{e^{3x} + e^x}{e^{4x} + 1} \, dx\), we will follow these steps: ### Step 1: Simplify the Integral We start by factoring out \(e^x\) from the numerator and denominator: \[ \int \frac{e^{3x} + e^x}{e^{4x} + 1} \, dx = \int \frac{e^x(e^{2x} + 1)}{e^{4x} + 1} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Evaluate int(1)/(sqrt(e^(5x))root(4)((e^(2x)+e^(-2x))^(3))) .

Find the domain of the functions f(x) = (1)/(sqrt( 4x^(2)-1)) +log _e (x(x^(2) -1))

Statement -1 : If I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx and I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx , then I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C where C is an arbitrary constant. Statement -2 : A primitive of f(x) =(x^(2)-1)/(x^(4)+x^(2)+1) is (1)/(2)log((x^(2)-x+1)/(x^(2)+x+1)) .

Evaluate: int1/(sqrt(e^(5x))(e^(2x)+e^(-2x))^3)^(1/4)

Integrate the functions (e^tan^(-1) x)/(1+x^2)

Evaluate int(dx)/(sqrt(1+e^(x)+e^(2x)))

Integrate the functions (e^x)/((1+e^x)(2+e^x)

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx