Home
Class 12
MATHS
Statement -1 : If I(1)=int(e^(x))/(e^(4...

Statement -1 : If `I_(1)=int(e^(x))/(e^(4x)+e^(2x)+1)dx` and
`I_(2)=int(e^(-x))/(e^(-4x)+e^(-2x)+1)dx`, then
`I_(2)-I_(1)=(1)/(2)log((e^(2x)-e^(x)+1)/(e^(2x)+e^(x)+1))+C`
where C is an arbitrary constant.
Statement -2 : A primitive of f(x) `=(x^(2)-1)/(x^(4)+x^(2)+1)` is
`(1)/(2)log((x^(2)-x+1)/(x^(2)+x+1))`.

A

Statement - 1 True ,
Statement -2 is True , Statement -2 is a correct
explanation for Statement -1.

B

Statement - 1 is True ,
Statement -2 is True , Statement -2 is a correct
explanation for Statement -1.

C

Statement - 1 True ,Statement - 2 is False.

D

Statement - 1 is False , Statement - 2 is True.

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the two statements provided and verify their correctness step by step. ### Step 1: Evaluate Statement 2 We start with the integral given in Statement 2: \[ I = \int \frac{x^2 - 1}{x^4 + x^2 + 1} \, dx ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|61 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Solved Example|92 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(x e^(2x))/((1+2x)^2)dx

int(e^x)/((1+e^x)(2+e^x))dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

Statement 1: int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C Statement 2: inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C