Home
Class 12
MATHS
int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c...

`int(2^x)/(sqrt(1-4^x))dx=ksin^(- 1)2^x+c`, then k =

A

log 2

B

`(1)/(2)log2`

C

`(1)/(2)`

D

`(1)/(log2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx \) and find the value of \( k \) in the expression \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = k \sin^{-1}(2^x) + c \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting \( 4^x \) in terms of \( 2^x \): \[ 4^x = (2^2)^x = (2^x)^2 \] Thus, we can rewrite the integral as: \[ \int \frac{2^x}{\sqrt{1 - (2^x)^2}} \, dx \] ### Step 2: Use substitution Let \( t = 2^x \). Then, differentiating both sides gives: \[ dt = 2^x \ln(2) \, dx \quad \Rightarrow \quad dx = \frac{dt}{2^x \ln(2)} = \frac{dt}{t \ln(2)} \] ### Step 3: Substitute in the integral Substituting \( t \) and \( dx \) into the integral, we have: \[ \int \frac{t}{\sqrt{1 - t^2}} \cdot \frac{dt}{t \ln(2)} = \frac{1}{\ln(2)} \int \frac{1}{\sqrt{1 - t^2}} \, dt \] ### Step 4: Integrate The integral \( \int \frac{1}{\sqrt{1 - t^2}} \, dt \) is a standard integral that evaluates to \( \sin^{-1}(t) + C \). Therefore, we have: \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \frac{1}{\ln(2)} \sin^{-1}(t) + C \] ### Step 5: Substitute back for \( t \) Substituting back \( t = 2^x \): \[ \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = \frac{1}{\ln(2)} \sin^{-1}(2^x) + C \] ### Step 6: Identify \( k \) From the expression \( \int \frac{2^x}{\sqrt{1 - 4^x}} \, dx = k \sin^{-1}(2^x) + c \), we can see that: \[ k = \frac{1}{\ln(2)} \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{\frac{1}{\ln(2)}} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : If int(2^(x))/(sqrt(1-4^(x)))=ksin^(-1)(2^(x)) , then k equals (1)/(log2) . STATEMENT-2 : If intf(x)dx=-f(x)+c , then f(log_(e)2)=(1)/(2) STATEMENT-3 : int(e^(x))/(sqrt(1+e^(x)))dx=-2sqrt(1+e^(x))+c

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

inte^(2x)/(4sqrt(e^x+1))dx

int(1)/(sqrt(4x^(2)-x+4))dx

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(x^2+1)/sqrt(x^2+4)dx

int(x-2)sqrt((1+x)/(1-x))dx