Home
Class 12
MATHS
inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is e...

`inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx` is equal to

A

`xe^(tan^(-1)x)+C`

B

`x^(2)e^(tan^(-1)x)+C`

C

`(1)/(x)e^(tan^(-1)x)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^{\tan^{-1} x} \left( 1 + \frac{x}{1 + x^2} \right) dx \), we will follow a systematic approach. ### Step 1: Simplify the integrand We start with the expression inside the integral: \[ 1 + \frac{x}{1 + x^2} \] To combine these terms, we can express \( 1 \) as \( \frac{1 + x^2}{1 + x^2} \): \[ 1 + \frac{x}{1 + x^2} = \frac{1 + x^2 + x}{1 + x^2} = \frac{1 + x + x^2}{1 + x^2} \] Thus, the integral becomes: \[ I = \int e^{\tan^{-1} x} \cdot \frac{1 + x + x^2}{1 + x^2} \, dx \] ### Step 2: Use substitution Let \( t = \tan^{-1} x \). Then, the derivative \( dt \) is given by: \[ dt = \frac{1}{1 + x^2} \, dx \quad \Rightarrow \quad dx = (1 + x^2) \, dt \] Also, from the substitution, we have: \[ x = \tan t \quad \Rightarrow \quad 1 + x^2 = 1 + \tan^2 t = \sec^2 t \] Now substituting these into the integral: \[ I = \int e^t \cdot \frac{1 + \tan t + \tan^2 t}{\sec^2 t} \cdot \sec^2 t \, dt = \int e^t (1 + \tan t + \tan^2 t) \, dt \] ### Step 3: Simplify the integral We can separate the integral: \[ I = \int e^t \, dt + \int e^t \tan t \, dt + \int e^t \tan^2 t \, dt \] ### Step 4: Apply integration by parts For the integral \( \int e^t \tan t \, dt \), we can use integration by parts: Let \( u = \tan t \) and \( dv = e^t dt \). Then \( du = \sec^2 t dt \) and \( v = e^t \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Thus, \[ \int e^t \tan t \, dt = e^t \tan t - \int e^t \sec^2 t \, dt \] ### Step 5: Combine results Now, substituting back: \[ I = e^t + e^t \tan t - \int e^t \sec^2 t \, dt + \int e^t \tan^2 t \, dt \] The integral \( \int e^t \sec^2 t \, dt \) can be solved similarly. ### Step 6: Final substitution Finally, we substitute back \( t = \tan^{-1} x \): \[ I = e^{\tan^{-1} x} \left( x + \tan^{-1} x \right) + C \] Since \( \tan(\tan^{-1} x) = x \). ### Final Result Thus, the integral evaluates to: \[ I = e^{\tan^{-1} x} \cdot x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int (tan^(-1)x)dx

int ((tan^(-1) x )^(3))/( 1+x^(2)) dx is equal to a) 3 ( tan^(-1) x )^(2) +C b) (1)/(4) ( tan^(-1)x)^(4) +C c) ( tan^(-1) x)^(4) + C d) none of these

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

The integral int_(-1)^(1) (|x+2|)/(x+2)dx is equal to

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx