Home
Class 12
MATHS
int(x e^x)/((1+x)^2)dx is equal to...

`int(x e^x)/((1+x)^2)dx` is equal to

A

`(e^(x))/(x+1)+C`

B

`e^(x)(x+1)+C`

C

`-(e^(x))/((x+1)^(2))+C`

D

`(e^(x))/(1+x^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{x e^x}{(1+x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \( x \) in terms of \( (1+x) \): \[ x = (1+x) - 1 \] Thus, we can express the integral as: \[ I = \int \frac{((1+x) - 1)e^x}{(1+x)^2} \, dx = \int \frac{(1+x)e^x}{(1+x)^2} \, dx - \int \frac{e^x}{(1+x)^2} \, dx \] This simplifies to: \[ I = \int \frac{e^x}{1+x} \, dx - \int \frac{e^x}{(1+x)^2} \, dx \] ### Step 2: Integration by Parts Now we will use integration by parts on the first integral \( \int \frac{e^x}{1+x} \, dx \). Let: - \( u = \frac{1}{1+x} \) → \( du = -\frac{1}{(1+x)^2} \, dx \) - \( dv = e^x \, dx \) → \( v = e^x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \frac{e^x}{1+x} \, dx = \frac{e^x}{1+x} - \int e^x \left(-\frac{1}{(1+x)^2}\right) \, dx \] This gives us: \[ \int \frac{e^x}{1+x} \, dx = \frac{e^x}{1+x} + \int \frac{e^x}{(1+x)^2} \, dx \] ### Step 3: Substitute Back Now we substitute this back into our expression for \( I \): \[ I = \left( \frac{e^x}{1+x} + \int \frac{e^x}{(1+x)^2} \, dx \right) - \int \frac{e^x}{(1+x)^2} \, dx \] The two integrals \( \int \frac{e^x}{(1+x)^2} \, dx \) cancel out: \[ I = \frac{e^x}{1+x} + C \] ### Final Answer Thus, the solution to the integral is: \[ I = \frac{e^x}{1+x} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • INDEFINITE INTEGRALS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|3 Videos
  • INCREASING AND DECREASING FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

int(x e^(2x))/((1+2x)^2)dx

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int x^3 e^(x^2) dx is equal to

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int e^x((x^2+1))/((x+1)^2)dx is equal to ((x-1)/(x+1))e^x+c (b) e^x((x+1)/(x-1))+c e^x(x+1)(x-1)+c (d) none of these

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

The integral int(1+x-1/x)e^(x+1/x)dx is equal to